dwj*_*ton 5 machine-learning xor weka neural-network
我刚开始使用Weka并且遇到了第一步的麻烦.
我们有训练集:
@relation PerceptronXOR @attribute X1 numeric @attribute X2 numeric @attribute Output numeric @data 1,1,-1 -1,1,1 1,-1,1 -1,-1,-1
我想做的第一步就是火车,然后使用Weka gui对一组进行分类.到目前为止我一直在做什么:
使用Weka 3.7.0.
输出:
=== Run information ===
Scheme: weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H 2 -R
Relation: PerceptronXOR
Instances: 4
Attributes: 3
X1
X2
Output
Test mode: evaluate on training data
=== Classifier model (full training set) ===
Linear Node 0
Inputs Weights
Threshold 0.21069691964232443
Node 1 1.8781169869419072
Node 2 -1.8403146612166397
Sigmoid Node 1
Inputs Weights
Threshold -3.7331156814378685
Attrib X1 3.6380519730323164
Attrib X2 -1.0420815868133226
Sigmoid Node 2
Inputs Weights
Threshold -3.64785119182632
Attrib X1 3.603244645539393
Attrib X2 0.9535137571446323
Class
Input
Node 0
Time taken to build model: 0 seconds
=== Evaluation on training set ===
=== Summary ===
Correlation coefficient 0.7047
Mean absolute error 0.6073
Root mean squared error 0.7468
Relative absolute error 60.7288 %
Root relative squared error 74.6842 %
Total Number of Instances 4
奇怪的是,在0.3的500次迭代没有得到它的错误,但5000 @ 0.1确实如此,所以让我们继续.
现在使用测试数据集:
@relation PerceptronXOR @attribute X1 numeric @attribute X2 numeric @attribute Output numeric @data 1,1,-1 -1,1,1 1,-1,1 -1,-1,-1 0.5,0.5,-1 -0.5,0.5,1 0.5,-0.5,1 -0.5,-0.5,-1
=== Run information ===
Scheme: weka.classifiers.functions.MultilayerPerceptron -L 0.1 -M 0.2 -N 5000 -V 0 -S 0 -E 20 -H 2 -R
Relation: PerceptronXOR
Instances: 4
Attributes: 3
X1
X2
Output
Test mode: user supplied test set: size unknown (reading incrementally)
=== Classifier model (full training set) ===
Linear Node 0
Inputs Weights
Threshold -1.2208619057226187
Node 1 3.1172079341507497
Node 2 -3.212484459911485
Sigmoid Node 1
Inputs Weights
Threshold 1.091378074639599
Attrib X1 1.8621040828953983
Attrib X2 1.800744048145267
Sigmoid Node 2
Inputs Weights
Threshold -3.372580743113282
Attrib X1 2.9207154176666386
Attrib X2 2.576791630598144
Class
Input
Node 0
Time taken to build model: 0.04 seconds
=== Evaluation on test set ===
=== Summary ===
Correlation coefficient 0.8296
Mean absolute error 0.3006
Root mean squared error 0.6344
Relative absolute error 30.0592 %
Root relative squared error 63.4377 %
Total Number of Instances 8
为什么无法正确分类?
是不是因为它在训练数据上迅速达到了局部最小值,并且不知道那不适合所有情况?
问题.
小智 4
对于这两个示例,使用 0.5 的学习率可以完成 500 次迭代。学习率是它为新示例赋予的权重。显然这个问题很困难,并且很容易通过 2 个隐藏层达到局部最小值。如果您使用低学习率和高迭代次数,学习过程将更加保守,并且更有可能达到良好的最小值。
| 归档时间: |
|
| 查看次数: |
18879 次 |
| 最近记录: |