byt*_*ark 6 multithreading blas scipy sparse-matrix matrix-multiplication
根据MKL BLAS文档"所有矩阵 - 矩阵运算(3级)都是针对密集和稀疏BLAS的线程." http://software.intel.com/en-us/articles/parallelism-in-the-intel-math-kernel-library
我用MKL BLAS制作了Scipy.使用下面的测试代码,我看到了预期的多线程加速,用于密集但非稀疏的矩阵乘法.Scipy是否有任何更改以启用多线程稀疏操作?
# test dense matrix multiplication
from numpy import *
import time
x = random.random((10000,10000))
t1 = time.time()
foo = dot(x.T, x)
print time.time() - t1
# test sparse matrix multiplication
from scipy import sparse
x = sparse.rand(10000,10000)
t1 = time.time()
foo = dot(x.T, x)
print time.time() - t1
Run Code Online (Sandbox Code Playgroud)
据我所知,答案是否定的.但是,您可以围绕MKL稀疏乘法例程构建自己的包装器.你问过两个稀疏矩阵的乘法.下面是一些我用于将一个稀疏矩阵乘以密集向量的包装器代码,因此它不应该很难适应(查看mkl_cspblas_dcsrgemm的英特尔MKL参考).另外,请注意你的scipy数组是如何存储的:default是coo,但csr(或csc)可能是更好的选择.我选择了csr,但MKL支持大多数类型(只需调用相应的例程).
据我所知,scipy的默认值和MKL都是多线程的.通过改变OMP_NUM_THREADS
我可以看到性能上的差异.
要使用下面的功能,如果您有最新版本的MKL,请确保已LD_LIBRARY_PATHS
设置为包含相关的MKL目录.对于旧版本,您需要构建一些特定的库.我在python中从IntelMKL获取了我的信息
def SpMV_viaMKL( A, x ):
"""
Wrapper to Intel's SpMV
(Sparse Matrix-Vector multiply)
For medium-sized matrices, this is 4x faster
than scipy's default implementation
Stephen Becker, April 24 2014
stephen.beckr@gmail.com
"""
import numpy as np
import scipy.sparse as sparse
from ctypes import POINTER,c_void_p,c_int,c_char,c_double,byref,cdll
mkl = cdll.LoadLibrary("libmkl_rt.so")
SpMV = mkl.mkl_cspblas_dcsrgemv
# Dissecting the "cspblas_dcsrgemv" name:
# "c" - for "c-blas" like interface (as opposed to fortran)
# Also means expects sparse arrays to use 0-based indexing, which python does
# "sp" for sparse
# "d" for double-precision
# "csr" for compressed row format
# "ge" for "general", e.g., the matrix has no special structure such as symmetry
# "mv" for "matrix-vector" multiply
if not sparse.isspmatrix_csr(A):
raise Exception("Matrix must be in csr format")
(m,n) = A.shape
# The data of the matrix
data = A.data.ctypes.data_as(POINTER(c_double))
indptr = A.indptr.ctypes.data_as(POINTER(c_int))
indices = A.indices.ctypes.data_as(POINTER(c_int))
# Allocate output, using same conventions as input
nVectors = 1
if x.ndim is 1:
y = np.empty(m,dtype=np.double,order='F')
if x.size != n:
raise Exception("x must have n entries. x.size is %d, n is %d" % (x.size,n))
elif x.shape[1] is 1:
y = np.empty((m,1),dtype=np.double,order='F')
if x.shape[0] != n:
raise Exception("x must have n entries. x.size is %d, n is %d" % (x.size,n))
else:
nVectors = x.shape[1]
y = np.empty((m,nVectors),dtype=np.double,order='F')
if x.shape[0] != n:
raise Exception("x must have n entries. x.size is %d, n is %d" % (x.size,n))
# Check input
if x.dtype.type is not np.double:
x = x.astype(np.double,copy=True)
# Put it in column-major order, otherwise for nVectors > 1 this FAILS completely
if x.flags['F_CONTIGUOUS'] is not True:
x = x.copy(order='F')
if nVectors == 1:
np_x = x.ctypes.data_as(POINTER(c_double))
np_y = y.ctypes.data_as(POINTER(c_double))
# now call MKL. This returns the answer in np_y, which links to y
SpMV(byref(c_char("N")), byref(c_int(m)),data ,indptr, indices, np_x, np_y )
else:
for columns in xrange(nVectors):
xx = x[:,columns]
yy = y[:,columns]
np_x = xx.ctypes.data_as(POINTER(c_double))
np_y = yy.ctypes.data_as(POINTER(c_double))
SpMV(byref(c_char("N")), byref(c_int(m)),data,indptr, indices, np_x, np_y )
return y
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
1928 次 |
最近记录: |