Ari*_*deh 6 arrays algorithm computer-science
我有一个整数数组(不一定排序),我想找到一个连续的子数组,其值的总和最小,但大于特定值 K
例如:
input:array : {1,2,4,9,5},键值:10
输出: {4,9}
我知道很容易做到这一点,O(n ^ 2)但我想这样做O(n)
我的想法:无论如何我都找不到,O(n)但我能想到的只是O(n^2)时间的复杂性.
Dan*_*her 10
我们假设它只能有正值.
那很容易.
解决方案是最小(最短)连续子阵列之一,其总和是> K.
取两个索引,一个用于子阵列的开始,一个用于结束(一个用于结束),以end = 0和开头start = 0.初始化sum = 0;和min = infinity
while(end < arrayLength) {
while(end < arrayLength && sum <= K) {
sum += array[end];
++end;
}
// Now you have a contiguous subarray with sum > K, or end is past the end of the array
while(sum - array[start] > K) {
sum -= array[start];
++start;
}
// Now, you have a _minimal_ contiguous subarray with sum > K (or end is past the end)
if (sum > K && sum < min) {
min = sum;
// store start and end if desired
}
// remove first element of the subarray, so that the next round begins with
// an array whose sum is <= K, for the end index to be increased
sum -= array[start];
++start;
}
Run Code Online (Sandbox Code Playgroud)
由于两个索引仅递增,因此算法是O(n).