use*_*088 3 string grep design-patterns r matching
给定如下数据结构:
set.seed(10)
fruits <- c("apple", "orange", "pineapple")
fruits2 <- data.frame(id = 1:10, fruit1 = sample(fruits, 10, replace = T), fruit2 = sample(fruits, 10, replace = T), fruit3 = sample(fruits, 10, replace = T))
> fruits2
id fruit1 fruit2 fruit3
1 1 orange orange pineapple
2 2 apple orange orange
3 3 orange apple pineapple
4 4 pineapple orange orange
5 5 apple orange orange
6 6 apple orange pineapple
7 7 apple apple pineapple
8 8 apple apple apple
9 9 orange orange pineapple
10 10 orange pineapple orange
Run Code Online (Sandbox Code Playgroud)
我可以轻松地测试data.frame中的任何位置是否与给定的字符串完全相等,fruits2 == "mystring"它将返回一个非常方便的格式.例如:
fruits2 == "orange"
id fruit1 fruit2 fruit3
[1,] FALSE TRUE TRUE FALSE
[2,] FALSE FALSE TRUE TRUE
[3,] FALSE TRUE FALSE FALSE
[4,] FALSE FALSE TRUE TRUE
[5,] FALSE FALSE TRUE TRUE
[6,] FALSE FALSE TRUE FALSE
[7,] FALSE FALSE FALSE FALSE
[8,] FALSE FALSE FALSE FALSE
[9,] FALSE TRUE TRUE FALSE
[10,] FALSE TRUE FALSE TRUE
Run Code Online (Sandbox Code Playgroud)
但是,我真正想做的是搜索模式(例如"apple")并返回相同的格式.也就是说,我希望能够测试data.frame中的每个项目中的包含(但不一定等于)字符串"apple"并返回相同的逻辑矩阵.在这种情况下,我希望它产生:
id fruit1 fruit2 fruit3
[1,] FALSE FALSE FALSE TRUE
[2,] FALSE TRUE FALSE FALSE
[3,] FALSE FALSE TRUE TRUE
[4,] FALSE TRUE FALSE FALSE
[5,] FALSE TRUE FALSE FALSE
[6,] FALSE TRUE FALSE TRUE
[7,] FALSE TRUE TRUE TRUE
[8,] FALSE TRUE TRUE TRUE
[9,] FALSE FALSE FALSE TRUE
[10,] FALSE FALSE TRUE FALSE
Run Code Online (Sandbox Code Playgroud)
有没有简单的方法在R中执行此操作而不指定多个模式(在这种情况下我知道 fruits2 == "apple" | fruits2 == "pineapple"会这样做,但在我的真实数据集中枚举所有可能的字符串以完全匹配是不可能的)?
我认为有解决方法,我可以编写一个函数来使用它,grepl()但我想知道是否有一个更简单的解决方案.
在基地R,
> apply(fruits2,2,function(x){grepl("apple",x)})
id fruit1 fruit2 fruit3
[1,] FALSE FALSE FALSE TRUE
[2,] FALSE TRUE FALSE FALSE
[3,] FALSE FALSE TRUE TRUE
[4,] FALSE TRUE FALSE FALSE
[5,] FALSE TRUE FALSE FALSE
[6,] FALSE TRUE FALSE TRUE
[7,] FALSE TRUE TRUE TRUE
[8,] FALSE TRUE TRUE TRUE
[9,] FALSE FALSE FALSE TRUE
[10,] FALSE FALSE TRUE FALSE
n = 10000
fruits2 <- data.frame(id = 1:n, fruit1 = sample(fruits, n, replace = T), fruit2 = sample(fruits, n, replace = T), fruit3 = sample(fruits, n, replace = T))
> system.time(apply(fruits2,2,function(x){grepl("apple",x)}))
user system elapsed
0.016 0.000 0.019
> system.time(colwise(myfun)(fruits2))
user system elapsed
0.016 0.000 0.017
> system.time(sapply(fruits2,function(x) grepl('apple',x)))
user system elapsed
0.032 0.000 0.034
Run Code Online (Sandbox Code Playgroud)
正如@eddi指出的那样,lapply确实是最快的:
> system.time(do.call("cbind",lapply(colnames(fruits2),function(x) grepl('apple',fruits2[,x]))))
user system elapsed
0.016 0.000 0.016
Run Code Online (Sandbox Code Playgroud)