sci*_*sci 4 algorithm dynamic-programming sequence divide-and-conquer
这对我来说是一个算法游乐场!我已经看到这个问题的变化处理最大连续子序列,但这也是另一个变化.正式的def:给定的A[1..n]发现i,j因此abs(A[i]+A[i+1]+...+A[j])最接近于零.
我想知道如何获得O(n log^2 n),甚至O(n log n)解决方案.
function leastSubsequenceSum(values) {
var n = values.length;
// Store the cumulative sum along with the index.
var sums = [];
sums[0] = { index: 0, sum: 0 };
for (var i = 1; i <= n; i++) {
sums[i] = {
index: i,
sum: sums[i-1].sum + values[i-1]
};
}
// Sort by cumulative sum
sums.sort(function (a, b) {
return a.sum == b.sum ? b.index - a.index : a.sum - b.sum;
});
// Find the sequential pair with the least difference.
var bestI = -1;
var bestDiff = null;
for (var i = 1; i <= n; i++) {
var diff = Math.abs(sums[i-1].sum - sums[i].sum);
if (bestDiff === null || diff < bestDiff) {
bestDiff = diff;
bestI = i;
}
}
// Just to make sure start < stop
var start = sums[bestI-1].index;
var stop = sums[bestI].index;
if (start > stop) {
var tmp = start;
start = stop;
stop = tmp;
}
return [start, stop-1, bestDiff];
}
Run Code Online (Sandbox Code Playgroud)
例子:
>>> leastSubsequenceSum([10, -5, 3, -4, 11, -4, 12, 20]);
[2, 3, 1]
>>> leastSubsequenceSum([5, 6, -1, -9, -2, 16, 19, 1, -4, 9]);
[0, 4, 1]
>>> leastSubsequenceSum([3, 16, 8, -10, -1, -8, -3, 10, -2, -4]);
[6, 9, 1]
Run Code Online (Sandbox Code Playgroud)
在第一个例子中,[2, 3, 1]表示从索引2到3(包括)的总和,你得到一个绝对和1:
[10, -5, 3, -4, 11, -4, 12, 20]
^^^^^
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
998 次 |
| 最近记录: |