CUDA的逐元素向量乘法

WVD*_*VDB 5 cuda complex-numbers cublas

我已经在CUDA中构建了一个基本内核,以对两个复杂向量进行逐元素向量-向量乘法。内核代码插入(multiplyElementwise)下面。它工作正常,但是由于我注意到在CUBLAS或CULA之类的库中优化了其他看似直接的操作(例如缩放矢量),所以我想知道是否可以通过库调用替换我的代码?令我惊讶的是,CUBLAS和CULA都没有此选项,我试图通过使向量之一成为对角矩阵向量乘积的对角线来伪造它,但是结果确实很慢。

作为最后的解决方法,我尝试multiplyElementwiseFast通过将两个向量加载到共享内存中然后从那里开始工作来自己优化该代码(请参见下文),但这比我的原始代码慢。

所以我的问题是:

  1. 是否有执行逐元素向量乘积的库?
  2. 如果没有,我可以加速代码(multiplyElementwise)吗?

任何帮助将不胜感激!

__global__ void multiplyElementwise(cufftComplex* f0, cufftComplex* f1, int size)
{
    const int i = blockIdx.x*blockDim.x + threadIdx.x;
    if (i < size)
    {
        float a, b, c, d;
        a = f0[i].x; 
        b = f0[i].y;
        c = f1[i].x; 
        d = f1[i].y;
        float k;
        k = a * (c + d);
        d =  d * (a + b);
        c =  c * (b - a);
        f0[i].x = k - d;
        f0[i].y = k + c;
    }
}

__global__ void multiplyElementwiseFast(cufftComplex* f0, cufftComplex* f1, int size)
{
    const int i = blockIdx.x*blockDim.x + threadIdx.x;
    if (i < 4*size)
    {
        const int N = 256;
        const int thId = threadIdx.x / 4;
        const int rem4 = threadIdx.x % 4;
        const int i4 = i / 4;

        __shared__ float a[N];
        __shared__ float b[N];
        __shared__ float c[N];
        __shared__ float d[N];
        __shared__ float Re[N];
        __shared__ float Im[N];

        if (rem4 == 0)
        {
            a[thId] = f0[i4].x;
            Re[thId] = 0.f;
        }
        if (rem4 == 1)
        {
            b[thId] = f0[i4].y;
            Im[thId] = 0.f;
        }
        if (rem4 == 2)
            c[thId] = f1[i4].x;
        if (rem4 == 0)
            d[thId] = f1[i4].y;
        __syncthreads();

        if (rem4 == 0)
            atomicAdd(&(Re[thId]), a[thId]*c[thId]);        
        if (rem4 == 1)
            atomicAdd(&(Re[thId]), -b[thId]*d[thId]);
        if (rem4 == 2)
            atomicAdd(&(Im[thId]), b[thId]*c[thId]);
        if (rem4 == 3)
            atomicAdd(&(Im[thId]), a[thId]*d[thId]);
        __syncthreads();

        if (rem4 == 0)
            f0[i4].x = Re[thId];
        if (rem4 == 1)
            f0[i4].y = Im[thId];
    }
}        
Run Code Online (Sandbox Code Playgroud)

Ben*_*enC 5

如果您要实现的是一个简单的,具有复数的按元素乘积,则您似乎确实在multiplyElementwise内核中执行了一些额外的步骤,这些步骤会增加寄存器的使用。您尝试计算的是:

f0[i].x = a*c - b*d;
f0[i].y = a*d + b*c;
Run Code Online (Sandbox Code Playgroud)

从此(a + ib)*(c + id) = (a*c - b*d) + i(a*d + b*c)。通过使用改进的复数乘法,您将以1乘法交换3加法和一些额外的寄存器。这是否合理可能取决于您使用的硬件。例如,如果您的硬件支持FMA(融合乘加),则这种优化可能无效。您应该考虑阅读以下文档:“ 精度和性能:浮点数和NVIDIA GPU的IEEE 754兼容性 ”,它也解决了浮点数精度问题。

不过,您应该考虑使用Thrust。该库提供了许多可在主机和设备向量上运行的高级工具。您可以在此处看到一长串示例:https : //github.com/thrust/thrust/tree/master/examples。这会使您的生活更加轻松。

更新的代码

在您的情况下,您可以使用此示例并将其改编为以下内容:

#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <time.h>

struct ElementWiseProductBasic : public thrust::binary_function<float2,float2,float2>
{
    __host__ __device__
    float2 operator()(const float2& v1, const float2& v2) const
    {
        float2 res;
        res.x = v1.x * v2.x - v1.y * v2.y;
        res.y = v1.x * v2.y + v1.y * v2.x;
        return res;
    }
};

/**
 * See: http://www.embedded.com/design/embedded/4007256/Digital-Signal-Processing-Tricks--Fast-multiplication-of-complex-numbers%5D
 */
struct ElementWiseProductModified : public thrust::binary_function<float2,float2,float2>
{
    __host__ __device__
    float2 operator()(const float2& v1, const float2& v2) const
    {
        float2 res;
        float a, b, c, d, k;
        a = v1.x;
        b = v1.y;
        c = v2.x;
        d = v2.y;
        k = a * (c + d);
        d =  d * (a + b);
        c =  c * (b - a);
        res.x = k -d;
        res.y = k + c;
        return res;
    }
};

int get_random_int(int min, int max)
{
    return min + (rand() % (int)(max - min + 1));
}

thrust::host_vector<float2> init_vector(const size_t N)
{
    thrust::host_vector<float2> temp(N);
    for(size_t i = 0; i < N; i++)
    {
        temp[i].x = get_random_int(0, 10);
        temp[i].y = get_random_int(0, 10);
    }
    return temp;
}

int main(void)
{
    const size_t N = 100000;
    const bool compute_basic_product    = true;
    const bool compute_modified_product = true;

    srand(time(NULL));

    thrust::host_vector<float2>   h_A = init_vector(N);
    thrust::host_vector<float2>   h_B = init_vector(N);
    thrust::device_vector<float2> d_A = h_A;
    thrust::device_vector<float2> d_B = h_B;

    thrust::host_vector<float2> h_result(N);
    thrust::host_vector<float2> h_result_modified(N);

    if (compute_basic_product)
    {
        thrust::device_vector<float2> d_result(N);

        thrust::transform(d_A.begin(), d_A.end(),
                          d_B.begin(), d_result.begin(),
                          ElementWiseProductBasic());
        h_result = d_result;
    }

    if (compute_modified_product)
    {
        thrust::device_vector<float2> d_result_modified(N);

        thrust::transform(d_A.begin(), d_A.end(),
                          d_B.begin(), d_result_modified.begin(),
                          ElementWiseProductModified());
        h_result_modified = d_result_modified;
    }

    std::cout << std::fixed;
    for (size_t i = 0; i < 4; i++)
    {
        float2 a = h_A[i];
        float2 b = h_B[i];

        std::cout << "(" << a.x << "," << a.y << ")";
        std::cout << " * ";
        std::cout << "(" << b.x << "," << b.y << ")";

        if (compute_basic_product)
        {
            float2 prod = h_result[i];
            std::cout << " = ";
            std::cout << "(" << prod.x << "," << prod.y << ")";
        }

        if (compute_modified_product)
        {
            float2 prod_modified = h_result_modified[i];
            std::cout << " = ";
            std::cout << "(" << prod_modified.x << "," << prod_modified.y << ")";
        }
        std::cout << std::endl;
    }   

    return 0;
}
Run Code Online (Sandbox Code Playgroud)

返回:

(6.000000,5.000000)  * (0.000000,1.000000)  = (-5.000000,6.000000)
(3.000000,2.000000)  * (0.000000,4.000000)  = (-8.000000,12.000000)
(2.000000,10.000000) * (10.000000,4.000000) = (-20.000000,108.000000)
(4.000000,8.000000)  * (10.000000,9.000000) = (-32.000000,116.000000)
Run Code Online (Sandbox Code Playgroud)

然后,您可以比较两种不同乘法策略的时序,并选择最适合您的硬件的方法。