Iñi*_*res 6 python numpy average
我有两个一维数组,一个用于测量数据,另一个用于位置.例如,测量数据可以是温度,另一个数组是测量的高度:
temp = np.asarray([10, 9.6, 9.3, ..., -20.3, -21.0]) # Temperature in celsius
height = np.asarray([129, 145, 167, ..., 5043, 5112]) # Height in meters
Run Code Online (Sandbox Code Playgroud)
如您所见,测量的高度不是有规律的间隔.
我想以规则间隔的高度间隔计算平均温度.这是某种移动平均线,但窗口大小是可变的,因为感兴趣区间内的数据点并不总是相同的.
这可以通过以下方式使用for循环来完成:
regular_heights = np.arange(0, 6000, 100) # Regular heights every 100m
regular_temps = []
for i in range(len(regular_heights)-1):
mask = np.logical_and(height > regular_heights[i], height < regular_heights[i+1])
mean = np.mean(temp[mask])
regular_temps.append(mean)
regular_temps = np.hstack((regular_temps))
Run Code Online (Sandbox Code Playgroud)
我不太喜欢这种方法,我想知道是否会有一个更"笨拙"的解决方案.
您可能正在寻找UnivariateSpline。例如:
from scipy.interpolate import UnivariateSpline
temp = np.asarray([10, 9.6, 9.3, 9.0, 8.7]) # Temperature in celsius
height = np.asarray([129, 145, 167, 190, 213]) # Height in meters
f = UnivariateSpline(height, temp)
Run Code Online (Sandbox Code Playgroud)
现在您可以f在任何您想要的地方进行评估:
regular_heights = np.arange(120, 213, 5) # Regular heights every 5m
plot(height, temp, 'o', regular_heights, f(regular_heights), 'x')
Run Code Online (Sandbox Code Playgroud)

| 归档时间: |
|
| 查看次数: |
1143 次 |
| 最近记录: |