sda*_*aau 9 python arrays numpy multidimensional-array
考虑一个numpy数组规范,通常用于指定matplotlib绘图数据:
t = np.arange(0.0,1.5,0.25)
s = np.sin(2*np.pi*t)
Run Code Online (Sandbox Code Playgroud)
基本上,这会将数据点的x坐标存储(x,y)在数组中t; 并且在数组中得到的y坐标(在这种情况下为y = f(x)的结果sin(x))s.然后,使用该numpy.nditer函数获取连续的条目对t并且s表示(x,y)数据点的坐标非常方便,如:
for x, y in np.nditer([t,s]):
print("xy: %f:%f" % (x,y))
Run Code Online (Sandbox Code Playgroud)
所以,我正在尝试以下代码段test.py:
import numpy as np
print("numpy version {0}".format(np.__version__))
t = np.arange(0.0,1.5,0.25) ; print("t", ["%+.2e"%i for i in t])
s = np.sin(2*np.pi*t) ; print("s", ["%+.2e"%i for i in s])
print("i", ["% 9d"%i for i in range(0, len(t))])
for x, y in np.nditer([t,s]):
print("xy: %f:%f" % (x,y))
Run Code Online (Sandbox Code Playgroud)
......结果如下:
$ python3.2 test.py
numpy version 1.7.0
t ['+0.00e+00', '+2.50e-01', '+5.00e-01', '+7.50e-01', '+1.00e+00', '+1.25e+00']
s ['+0.00e+00', '+1.00e+00', '+1.22e-16', '-1.00e+00', '-2.45e-16', '+1.00e+00']
i [' 0', ' 1', ' 2', ' 3', ' 4', ' 5']
xy: 0.000000:0.000000
xy: 0.250000:1.000000
xy: 0.500000:0.000000
xy: 0.750000:-1.000000
xy: 1.000000:-0.000000
xy: 1.250000:1.000000
$ python2.7 test.py
numpy version 1.5.1
('t', ['+0.00e+00', '+2.50e-01', '+5.00e-01', '+7.50e-01', '+1.00e+00', '+1.25e+00'])
('s', ['+0.00e+00', '+1.00e+00', '+1.22e-16', '-1.00e+00', '-2.45e-16', '+1.00e+00'])
('i', [' 0', ' 1', ' 2', ' 3', ' 4', ' 5'])
Traceback (most recent call last):
File "test.py", line 10, in <module>
for x, y in np.nditer([t,s]):
AttributeError: 'module' object has no attribute 'nditer'
Run Code Online (Sandbox Code Playgroud)
啊 - 事实证明,在NumPy 1.6中引入的迭代器对象nditer在numpy我的Python 2.7安装版本中不可用.
所以,由于我也想支持那个特定的版本,我需要找到适合老版本的方法numpy- 但我仍然喜欢只是指定的方便for x,y in somearray,并直接在循环中获取坐标.
在对numpy文档进行一些搞乱之后,我想出了这个getXyIter函数:
import numpy as np
print("numpy version {0}".format(np.__version__))
t = np.arange(0.0,1.5,0.25) ; print("t", ["%+.2e"%i for i in t])
s = np.sin(2*np.pi*t) ; print("s", ["%+.2e"%i for i in s])
print("i", ["% 9d"%i for i in range(0, len(t))])
def getXyIter(inarr):
if np.__version__ >= "1.6.0":
return np.nditer(inarr.tolist())
else:
dimensions = inarr.shape
xlen = dimensions[1]
xinds = np.arange(0, xlen, 1)
return np.transpose(np.take(inarr, xinds, axis=1))
for x, y in getXyIter(np.array([t,s])):
print("xyIt: %f:%f" % (x,y))
for x, y in np.nditer([t,s]):
print("xynd: %f:%f" % (x,y))
Run Code Online (Sandbox Code Playgroud)
......似乎工作正常
$ python2.7 test.py
numpy version 1.5.1
('t', ['+0.00e+00', '+2.50e-01', '+5.00e-01', '+7.50e-01', '+1.00e+00', '+1.25e+00'])
('s', ['+0.00e+00', '+1.00e+00', '+1.22e-16', '-1.00e+00', '-2.45e-16', '+1.00e+00'])
('i', [' 0', ' 1', ' 2', ' 3', ' 4', ' 5'])
xyIt: 0.000000:0.000000
xyIt: 0.250000:1.000000
xyIt: 0.500000:0.000000
xyIt: 0.750000:-1.000000
xyIt: 1.000000:-0.000000
xyIt: 1.250000:1.000000
Traceback (most recent call last):
File "test.py", line 23, in <module>
for x, y in np.nditer([t,s]):
AttributeError: 'module' object has no attribute 'nditer'
$ python3.2 test.py
numpy version 1.7.0
t ['+0.00e+00', '+2.50e-01', '+5.00e-01', '+7.50e-01', '+1.00e+00', '+1.25e+00']
s ['+0.00e+00', '+1.00e+00', '+1.22e-16', '-1.00e+00', '-2.45e-16', '+1.00e+00']
i [' 0', ' 1', ' 2', ' 3', ' 4', ' 5']
xyIt: 0.000000:0.000000
xyIt: 0.250000:1.000000
xyIt: 0.500000:0.000000
xyIt: 0.750000:-1.000000
xyIt: 1.000000:-0.000000
xyIt: 1.250000:1.000000
xynd: 0.000000:0.000000
xynd: 0.250000:1.000000
xynd: 0.500000:0.000000
xynd: 0.750000:-1.000000
xynd: 1.000000:-0.000000
xynd: 1.250000:1.000000
Run Code Online (Sandbox Code Playgroud)
我的问题是 - 就这样,这种迭代应该在numpy <1.6.0的版本中完成吗?
如何将两个向量串联成一个数组:
for x,y in np.c_[t,s]:
print("xy: %f:%f" % (x,y))
Run Code Online (Sandbox Code Playgroud)
这给
xy: 0.000000:0.000000
xy: 0.250000:1.000000
xy: 0.500000:0.000000
xy: 0.750000:-1.000000
xy: 1.000000:-0.000000
xy: 1.250000:1.000000
Run Code Online (Sandbox Code Playgroud)
如果要迭代以节省内存,可以使用以下itertools.izip函数:
for x,y in itertools.izip(t,s):
print("xy: %f:%f" % (x,y))
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
9085 次 |
| 最近记录: |