Mat*_*man 37 c++ networking ieee-754
我需要一个跨平台的库/算法,它将在32位和16位浮点数之间进行转换.我不需要使用16位数进行数学运算; 我只需要减小32位浮点数的大小,以便它们可以通过网络发送.我在C++工作.
我理解我会失去多少精确度,但这对我的应用来说是可以的.
IEEE 16位格式会很棒.
Phe*_*ost 51
完全从单精度到半精度的转换.这是我的SSE版本的直接副本,因此它是无分支的.它利用了在GCC(-true == ~0)中也可能对VisualStudio也是如此但我没有副本的事实.
#include <cstdint> // uint32_t, uint64_t, etc.
#include <cstring> // memcpy
#include <climits> // CHAR_BIT
#include <limits> // numeric_limits
#include <utility> // is_integral_v, is_floating_point_v, forward
namespace std
{
template< typename T , typename U >
T bit_cast( U&& u ) {
static_assert( sizeof( T ) == sizeof( U ) );
union { T t; }; // prevent construction
std::memcpy( &t, &u, sizeof( t ) );
return t;
}
} // namespace std
template< typename T > struct native_float_bits;
template<> struct native_float_bits< float >{ using type = std::uint32_t; };
template<> struct native_float_bits< double >{ using type = std::uint64_t; };
template< typename T > using native_float_bits_t = typename native_float_bits< T >::type;
static_assert( sizeof( float ) == sizeof( native_float_bits_t< float > ) );
static_assert( sizeof( double ) == sizeof( native_float_bits_t< double > ) );
template< typename T, int SIG_BITS, int EXP_BITS >
struct raw_float_type_info {
using raw_type = T;
static constexpr int sig_bits = SIG_BITS;
static constexpr int exp_bits = EXP_BITS;
static constexpr int bits = sig_bits + exp_bits + 1;
static_assert( std::is_integral_v< raw_type > );
static_assert( sig_bits >= 0 );
static_assert( exp_bits >= 0 );
static_assert( bits <= sizeof( raw_type ) * CHAR_BIT );
static constexpr int exp_max = ( 1 << exp_bits ) - 1;
static constexpr int exp_bias = exp_max >> 1;
static constexpr raw_type sign = raw_type( 1 ) << ( bits - 1 );
static constexpr raw_type inf = raw_type( exp_max ) << sig_bits;
static constexpr raw_type qnan = inf | ( inf >> 1 );
static constexpr auto abs( raw_type v ) { return raw_type( v & ( sign - 1 ) ); }
static constexpr bool is_nan( raw_type v ) { return abs( v ) > inf; }
static constexpr bool is_inf( raw_type v ) { return abs( v ) == inf; }
static constexpr bool is_zero( raw_type v ) { return abs( v ) == 0; }
};
using raw_flt16_type_info = raw_float_type_info< std::uint16_t, 10, 5 >;
using raw_flt32_type_info = raw_float_type_info< std::uint32_t, 23, 8 >;
using raw_flt64_type_info = raw_float_type_info< std::uint64_t, 52, 11 >;
//using raw_flt128_type_info = raw_float_type_info< uint128_t, 112, 15 >;
template< typename T, int SIG_BITS = std::numeric_limits< T >::digits - 1,
int EXP_BITS = sizeof( T ) * CHAR_BIT - SIG_BITS - 1 >
struct float_type_info
: raw_float_type_info< native_float_bits_t< T >, SIG_BITS, EXP_BITS > {
using flt_type = T;
static_assert( std::is_floating_point_v< flt_type > );
};
template< typename E >
struct raw_float_encoder
{
using enc = E;
using enc_type = typename enc::raw_type;
template< bool DO_ROUNDING, typename F >
static auto encode( F value )
{
using flt = float_type_info< F >;
using raw_type = typename flt::raw_type;
static constexpr auto sig_diff = flt::sig_bits - enc::sig_bits;
static constexpr auto bit_diff = flt::bits - enc::bits;
static constexpr auto do_rounding = DO_ROUNDING && sig_diff > 0;
static constexpr auto bias_mul = raw_type( enc::exp_bias ) << flt::sig_bits;
if constexpr( !do_rounding ) { // fix exp bias
// when not rounding, fix exp first to avoid mixing float and binary ops
value *= std::bit_cast< F >( bias_mul );
}
auto bits = std::bit_cast< raw_type >( value );
auto sign = bits & flt::sign; // save sign
bits ^= sign; // clear sign
auto is_nan = flt::inf < bits; // compare before rounding!!
if constexpr( do_rounding ) {
static constexpr auto min_norm = raw_type( flt::exp_bias - enc::exp_bias + 1 ) << flt::sig_bits;
static constexpr auto sub_rnd = enc::exp_bias < sig_diff
? raw_type( 1 ) << ( flt::sig_bits - 1 + enc::exp_bias - sig_diff )
: raw_type( enc::exp_bias - sig_diff ) << flt::sig_bits;
static constexpr auto sub_mul = raw_type( flt::exp_bias + sig_diff ) << flt::sig_bits;
bool is_sub = bits < min_norm;
auto norm = std::bit_cast< F >( bits );
auto subn = norm;
subn *= std::bit_cast< F >( sub_rnd ); // round subnormals
subn *= std::bit_cast< F >( sub_mul ); // correct subnormal exp
norm *= std::bit_cast< F >( bias_mul ); // fix exp bias
bits = std::bit_cast< raw_type >( norm );
bits += ( bits >> sig_diff ) & 1; // add tie breaking bias
bits += ( raw_type( 1 ) << ( sig_diff - 1 ) ) - 1; // round up to half
//if( is_sub ) bits = std::bit_cast< raw_type >( subn );
bits ^= -is_sub & ( std::bit_cast< raw_type >( subn ) ^ bits );
}
bits >>= sig_diff; // truncate
//if( enc::inf < bits ) bits = enc::inf; // fix overflow
bits ^= -( enc::inf < bits ) & ( enc::inf ^ bits );
//if( is_nan ) bits = enc::qnan;
bits ^= -is_nan & ( enc::qnan ^ bits );
bits |= sign >> bit_diff; // restore sign
return enc_type( bits );
}
template< typename F >
static F decode( enc_type value )
{
using flt = float_type_info< F >;
using raw_type = typename flt::raw_type;
static constexpr auto sig_diff = flt::sig_bits - enc::sig_bits;
static constexpr auto bit_diff = flt::bits - enc::bits;
static constexpr auto bias_mul = raw_type( 2 * flt::exp_bias - enc::exp_bias ) << flt::sig_bits;
raw_type bits = value;
auto sign = bits & enc::sign; // save sign
bits ^= sign; // clear sign
auto is_norm = bits < enc::inf;
bits = ( sign << bit_diff ) | ( bits << sig_diff );
auto val = std::bit_cast< F >( bits ) * std::bit_cast< F >( bias_mul );
bits = std::bit_cast< raw_type >( val );
//if( !is_norm ) bits |= flt::inf;
bits |= -!is_norm & flt::inf;
return std::bit_cast< F >( bits );
}
};
using flt16_encoder = raw_float_encoder< raw_flt16_type_info >;
template< typename F >
auto quick_encode_flt16( F && value )
{ return flt16_encoder::encode< false >( std::forward< F >( value ) ); }
template< typename F >
auto encode_flt16( F && value )
{ return flt16_encoder::encode< true >( std::forward< F >( value ) ); }
template< typename F = float, typename X >
auto decode_flt16( X && value )
{ return flt16_encoder::decode< F >( std::forward< X >( value ) ); }
Run Code Online (Sandbox Code Playgroud)
所以这需要很多,但它处理所有次正常值,包括无穷大,静音NaN,信号NaN和负零.当然,并不总是需要完整的IEEE支持.所以压缩泛型浮点数:
#include <cstdint> // uint32_t, uint64_t, etc.
#include <cstring> // memcpy
#include <climits> // CHAR_BIT
#include <limits> // numeric_limits
#include <utility> // is_integral_v, is_floating_point_v, forward
namespace std
{
template< typename T , typename U >
T bit_cast( U&& u ) {
static_assert( sizeof( T ) == sizeof( U ) );
union { T t; }; // prevent construction
std::memcpy( &t, &u, sizeof( t ) );
return t;
}
} // namespace std
template< typename T > struct native_float_bits;
template<> struct native_float_bits< float >{ using type = std::uint32_t; };
template<> struct native_float_bits< double >{ using type = std::uint64_t; };
template< typename T > using native_float_bits_t = typename native_float_bits< T >::type;
static_assert( sizeof( float ) == sizeof( native_float_bits_t< float > ) );
static_assert( sizeof( double ) == sizeof( native_float_bits_t< double > ) );
template< typename T, int SIG_BITS, int EXP_BITS >
struct raw_float_type_info {
using raw_type = T;
static constexpr int sig_bits = SIG_BITS;
static constexpr int exp_bits = EXP_BITS;
static constexpr int bits = sig_bits + exp_bits + 1;
static_assert( std::is_integral_v< raw_type > );
static_assert( sig_bits >= 0 );
static_assert( exp_bits >= 0 );
static_assert( bits <= sizeof( raw_type ) * CHAR_BIT );
static constexpr int exp_max = ( 1 << exp_bits ) - 1;
static constexpr int exp_bias = exp_max >> 1;
static constexpr raw_type sign = raw_type( 1 ) << ( bits - 1 );
static constexpr raw_type inf = raw_type( exp_max ) << sig_bits;
static constexpr raw_type qnan = inf | ( inf >> 1 );
static constexpr auto abs( raw_type v ) { return raw_type( v & ( sign - 1 ) ); }
static constexpr bool is_nan( raw_type v ) { return abs( v ) > inf; }
static constexpr bool is_inf( raw_type v ) { return abs( v ) == inf; }
static constexpr bool is_zero( raw_type v ) { return abs( v ) == 0; }
};
using raw_flt16_type_info = raw_float_type_info< std::uint16_t, 10, 5 >;
using raw_flt32_type_info = raw_float_type_info< std::uint32_t, 23, 8 >;
using raw_flt64_type_info = raw_float_type_info< std::uint64_t, 52, 11 >;
//using raw_flt128_type_info = raw_float_type_info< uint128_t, 112, 15 >;
template< typename T, int SIG_BITS = std::numeric_limits< T >::digits - 1,
int EXP_BITS = sizeof( T ) * CHAR_BIT - SIG_BITS - 1 >
struct float_type_info
: raw_float_type_info< native_float_bits_t< T >, SIG_BITS, EXP_BITS > {
using flt_type = T;
static_assert( std::is_floating_point_v< flt_type > );
};
template< typename E >
struct raw_float_encoder
{
using enc = E;
using enc_type = typename enc::raw_type;
template< bool DO_ROUNDING, typename F >
static auto encode( F value )
{
using flt = float_type_info< F >;
using raw_type = typename flt::raw_type;
static constexpr auto sig_diff = flt::sig_bits - enc::sig_bits;
static constexpr auto bit_diff = flt::bits - enc::bits;
static constexpr auto do_rounding = DO_ROUNDING && sig_diff > 0;
static constexpr auto bias_mul = raw_type( enc::exp_bias ) << flt::sig_bits;
if constexpr( !do_rounding ) { // fix exp bias
// when not rounding, fix exp first to avoid mixing float and binary ops
value *= std::bit_cast< F >( bias_mul );
}
auto bits = std::bit_cast< raw_type >( value );
auto sign = bits & flt::sign; // save sign
bits ^= sign; // clear sign
auto is_nan = flt::inf < bits; // compare before rounding!!
if constexpr( do_rounding ) {
static constexpr auto min_norm = raw_type( flt::exp_bias - enc::exp_bias + 1 ) << flt::sig_bits;
static constexpr auto sub_rnd = enc::exp_bias < sig_diff
? raw_type( 1 ) << ( flt::sig_bits - 1 + enc::exp_bias - sig_diff )
: raw_type( enc::exp_bias - sig_diff ) << flt::sig_bits;
static constexpr auto sub_mul = raw_type( flt::exp_bias + sig_diff ) << flt::sig_bits;
bool is_sub = bits < min_norm;
auto norm = std::bit_cast< F >( bits );
auto subn = norm;
subn *= std::bit_cast< F >( sub_rnd ); // round subnormals
subn *= std::bit_cast< F >( sub_mul ); // correct subnormal exp
norm *= std::bit_cast< F >( bias_mul ); // fix exp bias
bits = std::bit_cast< raw_type >( norm );
bits += ( bits >> sig_diff ) & 1; // add tie breaking bias
bits += ( raw_type( 1 ) << ( sig_diff - 1 ) ) - 1; // round up to half
//if( is_sub ) bits = std::bit_cast< raw_type >( subn );
bits ^= -is_sub & ( std::bit_cast< raw_type >( subn ) ^ bits );
}
bits >>= sig_diff; // truncate
//if( enc::inf < bits ) bits = enc::inf; // fix overflow
bits ^= -( enc::inf < bits ) & ( enc::inf ^ bits );
//if( is_nan ) bits = enc::qnan;
bits ^= -is_nan & ( enc::qnan ^ bits );
bits |= sign >> bit_diff; // restore sign
return enc_type( bits );
}
template< typename F >
static F decode( enc_type value )
{
using flt = float_type_info< F >;
using raw_type = typename flt::raw_type;
static constexpr auto sig_diff = flt::sig_bits - enc::sig_bits;
static constexpr auto bit_diff = flt::bits - enc::bits;
static constexpr auto bias_mul = raw_type( 2 * flt::exp_bias - enc::exp_bias ) << flt::sig_bits;
raw_type bits = value;
auto sign = bits & enc::sign; // save sign
bits ^= sign; // clear sign
auto is_norm = bits < enc::inf;
bits = ( sign << bit_diff ) | ( bits << sig_diff );
auto val = std::bit_cast< F >( bits ) * std::bit_cast< F >( bias_mul );
bits = std::bit_cast< raw_type >( val );
//if( !is_norm ) bits |= flt::inf;
bits |= -!is_norm & flt::inf;
return std::bit_cast< F >( bits );
}
};
using flt16_encoder = raw_float_encoder< raw_flt16_type_info >;
template< typename F >
auto quick_encode_flt16( F && value )
{ return flt16_encoder::encode< false >( std::forward< F >( value ) ); }
template< typename F >
auto encode_flt16( F && value )
{ return flt16_encoder::encode< true >( std::forward< F >( value ) ); }
template< typename F = float, typename X >
auto decode_flt16( X && value )
{ return flt16_encoder::decode< F >( std::forward< X >( value ) ); }
Run Code Online (Sandbox Code Playgroud)
这会强制所有值进入可接受的范围,不支持NaN,无穷大或负零.Epsilon是该范围内允许的最小值.精度是浮点数保留的精度位数.虽然上面有很多分支,但它们都是静态的,并且将由CPU中的分支预测器缓存.
当然,如果您的值不需要对数分辨率接近零.然后,如已经提到的那样,将它们线性化为定点格式要快得多.
我在图形库中使用FloatCompressor(SSE版本)来减小内存中线性浮点颜色值的大小.压缩浮动具有创建小型查找表的优点,用于耗时的功能,例如伽马校正或超越.压缩线性sRGB值减少到最大12位或最大值3011,这对于来自/来自sRGB的查找表大小是很好的.
Ale*_*lli 18
std::frexp从正常的浮点数或双精度数中提取有效数和指数 - 然后你需要决定如何处理太大而无法适应半精度浮点数的指数(饱和......?),相应地调整,并将半数 - 精确数一起. 本文有C源代码,向您展示如何执行转换.
Art*_*ius 18
根据您的需求(-1000,1000),使用定点表示可能会更好.
//change to 20000 to SHORT_MAX if you don't mind whole numbers
//being turned into fractional ones
const int compact_range = 20000;
short compactFloat(double input) {
return round(input * compact_range / 1000);
}
double expandToFloat(short input) {
return ((double)input) * 1000 / compact_range;
}
Run Code Online (Sandbox Code Playgroud)
这将使您精确到最接近的0.05.如果您将20000更改为SHORT_MAX,您将获得更高的准确性,但是一些整数将在另一端以小数形式结束.
小智 17
一半浮动:
float f = ((h&0x8000)<<16) | (((h&0x7c00)+0x1C000)<<13) | ((h&0x03FF)<<13);
浮动到一半:
uint32_t x = *((uint32_t*)&f);
uint16_t h = ((x>>16)&0x8000)|((((x&0x7f800000)-0x38000000)>>13)&0x7c00)|((x>>13)&0x03ff);
为什么这么复杂?我的实现不需要任何额外的库,符合 IEEE-754 FP16 格式,管理规范化和非规范化数字,无分支,需要大约 40 个时钟周期来来回转换和沟渠NaN或Inf扩展范围. 这就是位运算的神奇力量。
typedef unsigned short ushort;
typedef unsigned int uint;
uint as_uint(const float x) {
return *(uint*)&x;
}
float as_float(const uint x) {
return *(float*)&x;
}
float half_to_float(const ushort x) { // IEEE-754 16-bit floating-point format (without infinity): 1-5-10, exp-15, +-131008.0, +-6.1035156E-5, +-5.9604645E-8, 3.311 digits
const uint e = (x&0x7C00)>>10; // exponent
const uint m = (x&0x03FF)<<13; // mantissa
const uint v = as_uint((float)m)>>23; // evil log2 bit hack to count leading zeros in denormalized format
return as_float((x&0x8000)<<16 | (e!=0)*((e+112)<<23|m) | ((e==0)&(m!=0))*((v-37)<<23|((m<<(150-v))&0x007FE000))); // sign : normalized : denormalized
}
ushort float_to_half(const float x) { // IEEE-754 16-bit floating-point format (without infinity): 1-5-10, exp-15, +-131008.0, +-6.1035156E-5, +-5.9604645E-8, 3.311 digits
const uint b = as_uint(x)+0x00001000; // round-to-nearest-even: add last bit after truncated mantissa
const uint e = (b&0x7F800000)>>23; // exponent
const uint m = b&0x007FFFFF; // mantissa; in line below: 0x007FF000 = 0x00800000-0x00001000 = decimal indicator flag - initial rounding
return (b&0x80000000)>>16 | (e>112)*((((e-112)<<10)&0x7C00)|m>>13) | ((e<113)&(e>101))*((((0x007FF000+m)>>(125-e))+1)>>1) | (e>143)*0x7FFF; // sign : normalized : denormalized : saturate
}
Run Code Online (Sandbox Code Playgroud)
如何使用它并检查转换是否正确的示例:
#include <iostream>
void print_bits(const ushort x) {
for(int i=15; i>=0; i--) {
cout << ((x>>i)&1);
if(i==15||i==10) cout << " ";
if(i==10) cout << " ";
}
cout << endl;
}
void print_bits(const float x) {
uint b = *(uint*)&x;
for(int i=31; i>=0; i--) {
cout << ((b>>i)&1);
if(i==31||i==23) cout << " ";
if(i==23) cout << " ";
}
cout << endl;
}
int main() {
const float x = 1.0f;
const ushort x_compressed = float_to_half(x);
const float x_decompressed = half_to_float(x_compressed);
print_bits(x);
print_bits(x_compressed);
print_bits(x_decompressed);
return 0;
}
Run Code Online (Sandbox Code Playgroud)
输出:
0 01111111 00000000000000000000000
0 01111 0000000000
0 01111111 00000000000000000000000
Run Code Online (Sandbox Code Playgroud)
如果你要发送信息流,你可能会比这更好,特别是如果一切都在一致的范围内,就像你的应用程序似乎有的那样.
发送一个小的标题,它只包含一个float32最小值和最大值,然后你可以在两者之间作为16位插值发送信息.正如您所说,精度不是问题,您甚至可以一次发送8位.
在重建时你的价值会是这样的:
float t = _t / numeric_limits<unsigned short>::max(); // With casting, naturally ;)
float val = h.min + t * (h.max - h.min);
Run Code Online (Sandbox Code Playgroud)
希望有所帮助.
-Tom