end*_*ith 4 python numpy minimum where
In [3]: f1 = rand(100000)
In [5]: f2 = rand(100000)
# Obvious method:
In [12]: timeit fmin = np.amin((f1, f2), axis=0); fmax = np.amax((f1, f2), axis=0)
10 loops, best of 3: 59.2 ms per loop
In [13]: timeit fmin, fmax = np.sort((f1, f2), axis=0)
10 loops, best of 3: 30.8 ms per loop
In [14]: timeit fmin = np.where(f2 < f1, f2, f1); fmax = np.where(f2 < f1, f1, f2)
100 loops, best of 3: 5.73 ms per loop
In [36]: f1 = rand(1000,100,100)
In [37]: f2 = rand(1000,100,100)
In [39]: timeit fmin = np.amin((f1, f2), axis=0); fmax = np.amax((f1, f2), axis=0)
1 loops, best of 3: 6.13 s per loop
In [40]: timeit fmin, fmax = np.sort((f1, f2), axis=0)
1 loops, best of 3: 3.3 s per loop
In [41]: timeit fmin = np.where(f2 < f1, f2, f1); fmax = np.where(f2 < f1, f1, f2)
1 loops, best of 3: 617 ms per loop
Run Code Online (Sandbox Code Playgroud)
比如,也许有一种方法可以where一步完成两个命令并返回2个?
为什么没有amin以相同的方式实现where,如果它更快?
使用numpy的内置元素maximum和minimum- 它们比...更快where.numpy docs中的注释最大限度证实了这一点:
相当于np.where(x1> x2,x1,x2),但更快,并进行适当的广播.
你想要第一次测试的那一行是这样的:
fmin = np.minimum(f1, f2); fmax = np.maximum(f1, f2)
Run Code Online (Sandbox Code Playgroud)
我自己的结果显示这要快得多.请注意,只要两个参数的形状相同minimum,它们maximum就适用于任何n维数组.
Using amax 3.506
Using sort 1.830
Using where 0.635
Using numpy maximum, minimum 0.178
Run Code Online (Sandbox Code Playgroud)