我想使用R的优化函数构建自己的优化.
目标函数是多样化比率,以最大化它(希望它是正确的):
div.ratio<-function(weight,vol,cov.mat){
dr<-(t(weight) %*% vol) / (sqrt(t(weight) %*% cov.mat %*% (weight)))
return(-dr)
}
Run Code Online (Sandbox Code Playgroud)
一个例子:
rm(list=ls())
require(RCurl)
sit = getURLContent('https://github.com/systematicinvestor/SIT/raw/master/sit.gz', binary=TRUE, followlocation = TRUE, ssl.verifypeer = FALSE)
con = gzcon(rawConnection(sit, 'rb'))
source(con)
close(con)
load.packages('quantmod')
data <- new.env()
tickers<-spl("VTI,VGK,VWO,GLD,VNQ,TIP,TLT,AGG,LQD")
getSymbols(tickers, src = 'yahoo', from = '1980-01-01', env = data, auto.assign = T)
for(i in ls(data)) data[[i]] = adjustOHLC(data[[i]], use.Adjusted=T)
bt.prep(data, align='remove.na', dates='1990::2013')
prices<-data$prices[,-10] #don't include cash
ret<-na.omit(prices/mlag(prices) - 1)
vol<-apply(ret,2,sd)
cov.mat<-cov(ret)
optimize(div.ratio,
weight,
vol=vol,
cov.mat=cov.mat,
lower=0, #min constraints
upper=1, #max
tol = 0.00001)$minimum
Run Code Online (Sandbox Code Playgroud)
我收到以下错误消息,似乎是优化包不进行矢量优化.我做错了什么?
Error in t(weight) %*% cov.mat : non-conformable arguments
Run Code Online (Sandbox Code Playgroud)
首先,weight如果您正在尝试优化,则没有理由进入优化调用.然后,optimize在您尝试求解权重向量时进行一维优化.您可以改用该optim功能.
关于评论中的第二个问题,如何为函数设置一个约为1的约束?你可以使用这里提出的技巧:如何在约束优化中将参数'sum设置为1,即重写目标函数,如下所示:
div.ratio <- function(weight, vol, cov.mat){
weight <- weight / sum(weight)
dr <- (t(weight) %*% vol) / (sqrt(t(weight) %*% cov.mat %*% (weight)))
return(-dr)
}
Run Code Online (Sandbox Code Playgroud)
这给出了:
out <- optim(par = rep(1 / length(vol), length(vol)), # initial guess
fn = div.ratio,
vol = vol,
cov.mat = cov.mat,
method = "L-BFGS-B",
lower = 0,
upper = 1)
Run Code Online (Sandbox Code Playgroud)
你的最佳重量:
opt.weights <- out$par / sum(out$par)
# [1] 0.154271776 0.131322307 0.073752360 0.030885856 0.370706931 0.049627627
# [7] 0.055785740 0.126062746 0.007584657
pie(opt.weights, names(vol))
Run Code Online (Sandbox Code Playgroud)
