Android Compass可以补偿Tilt和Pitch

Ada*_*ies 22 android android-sensors

我正在尝试在我的Android手机(Nexus 4)上制作应用程序,该手机将用于模型船.我添加了低通滤波器来滤除传感器的gitter.

但是,当手机背面平放时,指南针才稳定.如果我把它向上倾斜,(例如转动一个嘘声的页面),那么指南针标题就会消失 - 多达50*.

我已经使用Sensor.TYPE_GRAVITY和Sensor.TYPE_ACCELEROMETER对Sensor.TYPE_MAGNETIC_FIELD进行了尝试,效果相同.

我已经使用了这里提到的解决方案以及许多其他地方.我的数学并不好,但这必定是一个常见的问题,我发现没有一个API可以解决这个问题令人沮丧.

我已经在这个问题上工作了3天并且仍然没有找到任何解决方案,但是当我使用CatchCompass时,无论手机倾斜多少,它们都能保持稳定.所以我知道这一定是可能的.

我想做的就是创建一个指南针,如果手机指向北方,那么指南针将向北读取,而当手机通过任何其他轴(滚动或俯仰)时,指南针不会跳转.

在我不得不放弃我的项目之前,任何人都可以请求帮助.

谢谢,亚当

Sto*_*lly 33

由于共同发病,我一直在考虑这个问题几周,因为

  1. 作为一名数学家,我对其他地方所提出的任何答案都不满意; 和
  2. 对于我正在开发的应用,我需要一个很好的答案.
因此,在过去的几天里,我想出了一种计算方位角值的方法,用于指南针.

我把我在数学上使用的数学放在math.stackexchange.com上,并且我已经粘贴了我在下面使用过的代码.该代码根据原始数据TYPE_GRAVITYTYPE_MAGNETIC_FIELD传感器数据计算方位角和音高,而不需要任何API调用,例如 SensorManager.getRotationMatrix(...)SensorManager.getOrientation(...).如果输入变得有点不稳定,则可以通过使用低通滤波器来改进代码.请注意,代码通过该方法记录传感器的精度onAccuracyChanged(Sensor sensor, int accuracy),因此如果方位角看起来不稳定,另外要检查的是每个传感器的准确度.在任何情况下,如果在此代码中明确可见所有计算,如果存在不稳定性问题(当传感器精度合理时),则可以通过查看输入或方向向量中的不稳定性来解决它们m_NormGravityVector[],m_NormEastVector[]或者m_NormNorthVector[].

我对这个方法对我有任何反馈意见非常感兴趣.我发现它在我自己的应用程序中就像一个梦,只要设备是平面朝上,垂直或介于两者之间.但是,正如我在math.stackexchange.com文章中提到的那样,当设备接近颠倒时会出现问题.在那种情况下,人们需要仔细定义自己想要的行为.

    import android.app.Activity;
    import android.hardware.Sensor;
    import android.hardware.SensorEvent;
    import android.hardware.SensorEventListener;
    import android.hardware.SensorManager;
    import android.view.Surface;

    public static class OrientationSensor implements  SensorEventListener {

    public final static int SENSOR_UNAVAILABLE = -1;

    // references to other objects
    SensorManager m_sm;
    SensorEventListener m_parent;   // non-null if this class should call its parent after onSensorChanged(...) and onAccuracyChanged(...) notifications
    Activity m_activity;            // current activity for call to getWindowManager().getDefaultDisplay().getRotation()

    // raw inputs from Android sensors
    float m_Norm_Gravity;           // length of raw gravity vector received in onSensorChanged(...).  NB: should be about 10
    float[] m_NormGravityVector;    // Normalised gravity vector, (i.e. length of this vector is 1), which points straight up into space
    float m_Norm_MagField;          // length of raw magnetic field vector received in onSensorChanged(...). 
    float[] m_NormMagFieldValues;   // Normalised magnetic field vector, (i.e. length of this vector is 1)

    // accuracy specifications. SENSOR_UNAVAILABLE if unknown, otherwise SensorManager.SENSOR_STATUS_UNRELIABLE, SENSOR_STATUS_ACCURACY_LOW, SENSOR_STATUS_ACCURACY_MEDIUM or SENSOR_STATUS_ACCURACY_HIGH
    int m_GravityAccuracy;          // accuracy of gravity sensor
    int m_MagneticFieldAccuracy;    // accuracy of magnetic field sensor

    // values calculated once gravity and magnetic field vectors are available
    float[] m_NormEastVector;       // normalised cross product of raw gravity vector with magnetic field values, points east
    float[] m_NormNorthVector;      // Normalised vector pointing to magnetic north
    boolean m_OrientationOK;        // set true if m_azimuth_radians and m_pitch_radians have successfully been calculated following a call to onSensorChanged(...)
    float m_azimuth_radians;        // angle of the device from magnetic north
    float m_pitch_radians;          // tilt angle of the device from the horizontal.  m_pitch_radians = 0 if the device if flat, m_pitch_radians = Math.PI/2 means the device is upright.
    float m_pitch_axis_radians;     // angle which defines the axis for the rotation m_pitch_radians

    public OrientationSensor(SensorManager sm, SensorEventListener parent) {
        m_sm = sm;
        m_parent = parent;
        m_activity = null;
        m_NormGravityVector = m_NormMagFieldValues = null;
        m_NormEastVector = new float[3];
        m_NormNorthVector = new float[3];
        m_OrientationOK = false;
    }

    public int Register(Activity activity, int sensorSpeed) {
        m_activity = activity;  // current activity required for call to getWindowManager().getDefaultDisplay().getRotation()
        m_NormGravityVector = new float[3];
        m_NormMagFieldValues = new float[3];
        m_OrientationOK = false;
        int count = 0;
        Sensor SensorGravity = m_sm.getDefaultSensor(Sensor.TYPE_GRAVITY);
        if (SensorGravity != null) {
            m_sm.registerListener(this, SensorGravity, sensorSpeed);
            m_GravityAccuracy = SensorManager.SENSOR_STATUS_ACCURACY_HIGH;
            count++;
        } else {
            m_GravityAccuracy = SENSOR_UNAVAILABLE;
        }
        Sensor SensorMagField = m_sm.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);
        if (SensorMagField != null) {
            m_sm.registerListener(this, SensorMagField, sensorSpeed);
            m_MagneticFieldAccuracy = SensorManager.SENSOR_STATUS_ACCURACY_HIGH;     
            count++;
        } else {
            m_MagneticFieldAccuracy = SENSOR_UNAVAILABLE;
        }
        return count;
    }

    public void Unregister() {
        m_activity = null;
        m_NormGravityVector = m_NormMagFieldValues = null;
        m_OrientationOK = false;
        m_sm.unregisterListener(this);
    }

    @Override
    public void onSensorChanged(SensorEvent evnt) {
        int SensorType = evnt.sensor.getType();
        switch(SensorType) {
            case Sensor.TYPE_GRAVITY:
                if (m_NormGravityVector == null) m_NormGravityVector = new float[3];
                System.arraycopy(evnt.values, 0, m_NormGravityVector, 0, m_NormGravityVector.length);                   
                m_Norm_Gravity = (float)Math.sqrt(m_NormGravityVector[0]*m_NormGravityVector[0] + m_NormGravityVector[1]*m_NormGravityVector[1] + m_NormGravityVector[2]*m_NormGravityVector[2]);
                for(int i=0; i < m_NormGravityVector.length; i++) m_NormGravityVector[i] /= m_Norm_Gravity;
                break;
            case Sensor.TYPE_MAGNETIC_FIELD:
                if (m_NormMagFieldValues == null) m_NormMagFieldValues = new float[3];
                System.arraycopy(evnt.values, 0, m_NormMagFieldValues, 0, m_NormMagFieldValues.length);
                m_Norm_MagField = (float)Math.sqrt(m_NormMagFieldValues[0]*m_NormMagFieldValues[0] + m_NormMagFieldValues[1]*m_NormMagFieldValues[1] + m_NormMagFieldValues[2]*m_NormMagFieldValues[2]);
                for(int i=0; i < m_NormMagFieldValues.length; i++) m_NormMagFieldValues[i] /= m_Norm_MagField;  
                break;
        }
        if (m_NormGravityVector != null && m_NormMagFieldValues != null) {
            // first calculate the horizontal vector that points due east
            float East_x = m_NormMagFieldValues[1]*m_NormGravityVector[2] - m_NormMagFieldValues[2]*m_NormGravityVector[1];
            float East_y = m_NormMagFieldValues[2]*m_NormGravityVector[0] - m_NormMagFieldValues[0]*m_NormGravityVector[2];
            float East_z = m_NormMagFieldValues[0]*m_NormGravityVector[1] - m_NormMagFieldValues[1]*m_NormGravityVector[0];
            float norm_East = (float)Math.sqrt(East_x * East_x + East_y * East_y + East_z * East_z);
            if (m_Norm_Gravity * m_Norm_MagField * norm_East < 0.1f) {  // Typical values are  > 100.
                m_OrientationOK = false; // device is close to free fall (or in space?), or close to magnetic north pole.
            } else {
                m_NormEastVector[0] = East_x / norm_East; m_NormEastVector[1] = East_y / norm_East; m_NormEastVector[2] = East_z / norm_East;

                // next calculate the horizontal vector that points due north                   
                float M_dot_G = (m_NormGravityVector[0] *m_NormMagFieldValues[0] + m_NormGravityVector[1]*m_NormMagFieldValues[1] + m_NormGravityVector[2]*m_NormMagFieldValues[2]);
                float North_x = m_NormMagFieldValues[0] - m_NormGravityVector[0] * M_dot_G;
                float North_y = m_NormMagFieldValues[1] - m_NormGravityVector[1] * M_dot_G;
                float North_z = m_NormMagFieldValues[2] - m_NormGravityVector[2] * M_dot_G;
                float norm_North = (float)Math.sqrt(North_x * North_x + North_y * North_y + North_z * North_z);
                m_NormNorthVector[0] = North_x / norm_North; m_NormNorthVector[1] = North_y / norm_North; m_NormNorthVector[2] = North_z / norm_North;

                // take account of screen rotation away from its natural rotation
                int rotation = m_activity.getWindowManager().getDefaultDisplay().getRotation();
                float screen_adjustment = 0;
                switch(rotation) {
                    case Surface.ROTATION_0:   screen_adjustment =          0;         break;
                    case Surface.ROTATION_90:  screen_adjustment =   (float)Math.PI/2; break;
                    case Surface.ROTATION_180: screen_adjustment =   (float)Math.PI;   break;
                    case Surface.ROTATION_270: screen_adjustment = 3*(float)Math.PI/2; break;
                }
                // NB: the rotation matrix has now effectively been calculated. It consists of the three vectors m_NormEastVector[], m_NormNorthVector[] and m_NormGravityVector[]

                // calculate all the required angles from the rotation matrix
                // NB: see https://math.stackexchange.com/questions/381649/whats-the-best-3d-angular-co-ordinate-system-for-working-with-smartfone-apps
                float sin = m_NormEastVector[1] -  m_NormNorthVector[0], cos = m_NormEastVector[0] +  m_NormNorthVector[1];
                m_azimuth_radians = (float) (sin != 0 && cos != 0 ? Math.atan2(sin, cos) : 0);
                m_pitch_radians = (float) Math.acos(m_NormGravityVector[2]);
                sin = -m_NormEastVector[1] -  m_NormNorthVector[0]; cos = m_NormEastVector[0] -  m_NormNorthVector[1];
                float aximuth_plus_two_pitch_axis_radians = (float)(sin != 0 && cos != 0 ? Math.atan2(sin, cos) : 0);
                m_pitch_axis_radians = (float)(aximuth_plus_two_pitch_axis_radians - m_azimuth_radians) / 2;
                m_azimuth_radians += screen_adjustment;
                m_pitch_axis_radians += screen_adjustment;
                m_OrientationOK = true;                                 
            }
        }
        if (m_parent != null) m_parent.onSensorChanged(evnt);
    }

    @Override
    public void onAccuracyChanged(Sensor sensor, int accuracy) {
        int SensorType = sensor.getType();
        switch(SensorType) {
            case Sensor.TYPE_GRAVITY: m_GravityAccuracy = accuracy; break;
            case Sensor.TYPE_MAGNETIC_FIELD: m_MagneticFieldAccuracy = accuracy; break;
        }
        if (m_parent != null) m_parent.onAccuracyChanged(sensor, accuracy);
    }
}
Run Code Online (Sandbox Code Playgroud)


Ada*_*ies 13

好吧,我想我解决了.

我没有使用Sensor.TYPE_ACCELEROMETER(或TYPE_GRAVITY)和Sensor.TYPE_MAGNETIC_FIELD,而是使用了Sensor.TYPE_ROTATION_VECTOR:

float[] roationV = new float[16];
SensorManager.getRotationMatrixFromVector(roationV, rotationVector);

float[] orientationValuesV = new float[3];
SensorManager.getOrientation(roationV, orientationValuesV);
Run Code Online (Sandbox Code Playgroud)

无论手机的滚动或俯仰,都会返回稳定的方位角.

如果您看一下表1下方的Android运动传感器,它表示ROTATION传感器非常适合指南针,增强现实等.

当你知道如何......这么容易.但是,我还没有测试这个,看看是否引入了错误.

  • 仅供参考,我想您可能会发现TYPE_ROTATION_VECTOR仅在您使用的设备具有陀螺仪时可用. (4认同)