我是编程世界的新手.我只是在python中编写这段代码来生成N个素数.用户应输入N的值,即打印出的素数总数.我写了这段代码,但它没有抛出所需的输出.相反,它打印素数直到第N个数字.例如:用户输入N = 7的值.所需输出:2,3,5,7,11,13,19实际输出:2,3,5,7
好心提醒.
i=1
x = int(input("Enter the number:"))
for k in range (1, (x+1), 1):
c=0
for j in range (1, (i+1), 1):
a = i%j
if (a==0):
c = c+1
if (c==2):
print (i)
else:
k = k-1
i=i+1
Run Code Online (Sandbox Code Playgroud)
小智 32
使用正则表达式:)
#!/usr/bin/python
import re, sys
def isPrime(n):
# see http://www.noulakaz.net/weblog/2007/03/18/a-regular-expression-to-check-for-prime-numbers/
return re.match(r'^1?$|^(11+?)\1+$', '1' * n) == None
N = int(sys.argv[1]) # number of primes wanted (from command-line)
M = 100 # upper-bound of search space
l = list() # result list
while len(l) < N:
l += filter(isPrime, range(M - 100, M)) # append prime element of [M - 100, M] to l
M += 100 # increment upper-bound
print l[:N] # print result list limited to N elements
Run Code Online (Sandbox Code Playgroud)
Dom*_*mra 15
大卫·艾普斯坦(David Eppstein)实施的超级快速筛选- 我的PC上前1000个素数需要0.146秒:
def gen_primes():
""" Generate an infinite sequence of prime numbers.
"""
# Maps composites to primes witnessing their compositeness.
# This is memory efficient, as the sieve is not "run forward"
# indefinitely, but only as long as required by the current
# number being tested.
#
D = {}
# The running integer that's checked for primeness
q = 2
while True:
if q not in D:
# q is a new prime.
# Yield it and mark its first multiple that isn't
# already marked in previous iterations
#
yield q
D[q * q] = [q]
else:
# q is composite. D[q] is the list of primes that
# divide it. Since we've reached q, we no longer
# need it in the map, but we'll mark the next
# multiples of its witnesses to prepare for larger
# numbers
#
for p in D[q]:
D.setdefault(p + q, []).append(p)
del D[q]
q += 1
primes = gen_primes()
x = set()
y = 0
a = gen_primes()
while y < 10000:
x |= set([a.next()])
y+=1
print "x contains {:,d} primes".format(len(x))
print "largest is {:,d}".format(sorted(x)[-1])
Run Code Online (Sandbox Code Playgroud)
Bre*_*wey 14
作为参考,各种所述解决方案之间存在非常显着的速度差异.这是一些比较代码.Lennart指出的解决方案被称为"历史性",Ants提出的解决方案被称为"天真",而RC的解决方案被称为"regexp".
from sys import argv
from time import time
def prime(i, primes):
for prime in primes:
if not (i == prime or i % prime):
return False
primes.add(i)
return i
def historic(n):
primes = set([2])
i, p = 2, 0
while True:
if prime(i, primes):
p += 1
if p == n:
return primes
i += 1
def naive(n):
from itertools import count, islice
primes = (n for n in count(2) if all(n % d for d in range(2, n)))
return islice(primes, 0, n)
def isPrime(n):
import re
# see http://tinyurl.com/3dbhjv
return re.match(r'^1?$|^(11+?)\1+$', '1' * n) == None
def regexp(n):
import sys
N = int(sys.argv[1]) # number of primes wanted (from command-line)
M = 100 # upper-bound of search space
l = list() # result list
while len(l) < N:
l += filter(isPrime, range(M - 100, M)) # append prime element of [M - 100, M] to l
M += 100 # increment upper-bound
return l[:N] # print result list limited to N elements
def dotime(func, n):
print func.__name__
start = time()
print sorted(list(func(n)))
print 'Time in seconds: ' + str(time() - start)
if __name__ == "__main__":
for func in naive, historic, regexp:
dotime(func, int(argv[1]))
Run Code Online (Sandbox Code Playgroud)
我机器上n = 100的输出是:
naive
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541]
Time in seconds: 0.0219371318817
historic
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541]
Time in seconds: 0.00515413284302
regexp
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541]
Time in seconds: 0.0733318328857
Run Code Online (Sandbox Code Playgroud)
如你所见,这是一个非常大的差异.这里再次为1000(删除了主要输出):
naive
Time in seconds: 1.49018788338
historic
Time in seconds: 0.148319005966
regexp
Time in seconds: 29.2350409031
Run Code Online (Sandbox Code Playgroud)
你想要的是这样的:
x = int(input("Enter the number:"))
count = 0
num = 2
while count < x:
if isnumprime(x):
print(x)
count += 1
num += 1
Run Code Online (Sandbox Code Playgroud)
我将由您来实现isnumprime();)提示:您只需要使用所有先前找到的素数来测试除法。