在多个列中汇总data.table

sds*_*sds 3 r data.table

如何在多列中汇总不可靠数据的data.table

具体来说,给定

fields <- c("country","language")
dt <- data.table(user=c(rep(3, 5), rep(4, 5)),
                 behavior=c(rep(FALSE,5),rep(TRUE,5)),
                 country=c(rep(1,4),rep(2,6)),
                 language=c(rep(6,6),rep(5,4)),
                 event=1:10, key=c("user",fields))
dt
#     user behavior country language event
#  1:    3    FALSE       1        6     1
#  2:    3    FALSE       1        6     2
#  3:    3    FALSE       1        6     3
#  4:    3    FALSE       1        6     4
#  5:    3    FALSE       2        6     5
#  6:    4     TRUE       2        5     7
#  7:    4     TRUE       2        5     8
#  8:    4     TRUE       2        5     9
#  9:    4     TRUE       2        5    10
# 10:    4     TRUE       2        6     6
Run Code Online (Sandbox Code Playgroud)

我想得到

#    user behavior country.name country.support language.name language.support
# 1:    3    FALSE            1             0.8             6              1.0
# 2:    4     TRUE            2             1.0             5              0.8
Run Code Online (Sandbox Code Playgroud)

(这里x.name是最常见的x,userx.support是观察到这个顶部x的共享事件)

无需fields像这样手动完成:

users <- dt[, sum(behavior) > 0, by=user] # have behavior at least once
setnames(users, "V1", "behavior")
dt.out <- dt[, .N, by=list(user,country)
             ][, list(country[which.max(N)],max(N)/sum(N)), by=user]
setnames(dt.out, c("V1", "V2"),  paste0("country",c(".name", ".support")))
users <- users[dt.out]
dt.out <- dt[, .N, by=list(user,language)
             ][, list(language[which.max(N)], max(N)/sum(N)), by=user]
setnames(dt.out, c("V1", "V2"),  paste0("language",c(".name", ".support")))
users <- users[dt.out]
users
#    user behavior country.name country.support language.name language.support
# 1:    3    FALSE            1             0.8             6              1.0
# 2:    4     TRUE            2             1.0             5              0.8
Run Code Online (Sandbox Code Playgroud)

实际的数字fields是5,我想避免分别为每个字段重复相同的代码,如果我修改过,必须编辑这个函数fields.请注意,是这个问题的实质内容,支持计算在别处向我解释.

正如所引用的问题,我的数据集有大约10 ^ 7行,所以我真的需要一个扩展的解决方案; 如果我可以避免不必要的复制,那也很好users <- users[dt.out].

Vic*_* K. 5

这会解决您的问题吗?

fields <- c("country","language")
dt <- data.table(user=c(rep(3, 5), rep(4, 5)),
           behavior=c(rep(FALSE,5),rep(TRUE,5)),
           country=c(rep(1,4),rep(2,6)),
           language=c(rep(6,6),rep(5,4)),
           event=1:10, key=c("user",fields))

CalculateSupport <- function(dt, name) {
  x <- dt[, .N, by = eval(paste0('user,', name))]
  setnames(x, name, 'name')
  x <- x[, list(name[which.max(N)], max(N)/sum(N)), by = user]
  setnames(x, c('V1', 'V2'), paste0(name, c(".name", ".support")))
  x
}

users <- dt[, sum(behavior) > 0, by=user] 
setnames(users, "V1", "behavior")

Reduce(function(x, name) x[CalculateSupport(dt, name)], fields, users)
Run Code Online (Sandbox Code Playgroud)

结果是

   user behavior country.name country.support language.name language.support
1:    3    FALSE            1             0.8             6              1.0
2:    4     TRUE            2             1.0             5              0.8
Run Code Online (Sandbox Code Playgroud)

PS请认真对待里卡多对你的问题的评论.所以有很多很乐意帮助你的人,但是你必须得到很好的尊重.