如何在多列中汇总不可靠数据的data.table?
具体来说,给定
fields <- c("country","language")
dt <- data.table(user=c(rep(3, 5), rep(4, 5)),
behavior=c(rep(FALSE,5),rep(TRUE,5)),
country=c(rep(1,4),rep(2,6)),
language=c(rep(6,6),rep(5,4)),
event=1:10, key=c("user",fields))
dt
# user behavior country language event
# 1: 3 FALSE 1 6 1
# 2: 3 FALSE 1 6 2
# 3: 3 FALSE 1 6 3
# 4: 3 FALSE 1 6 4
# 5: 3 FALSE 2 6 5
# 6: 4 TRUE 2 5 7
# 7: 4 TRUE 2 5 8
# 8: 4 TRUE 2 5 9
# 9: 4 TRUE 2 5 10
# 10: 4 TRUE 2 6 6
Run Code Online (Sandbox Code Playgroud)
我想得到
# user behavior country.name country.support language.name language.support
# 1: 3 FALSE 1 0.8 6 1.0
# 2: 4 TRUE 2 1.0 5 0.8
Run Code Online (Sandbox Code Playgroud)
(这里x.name是最常见的x,user而x.support是观察到这个顶部x的共享事件)
无需fields像这样手动完成:
users <- dt[, sum(behavior) > 0, by=user] # have behavior at least once
setnames(users, "V1", "behavior")
dt.out <- dt[, .N, by=list(user,country)
][, list(country[which.max(N)],max(N)/sum(N)), by=user]
setnames(dt.out, c("V1", "V2"), paste0("country",c(".name", ".support")))
users <- users[dt.out]
dt.out <- dt[, .N, by=list(user,language)
][, list(language[which.max(N)], max(N)/sum(N)), by=user]
setnames(dt.out, c("V1", "V2"), paste0("language",c(".name", ".support")))
users <- users[dt.out]
users
# user behavior country.name country.support language.name language.support
# 1: 3 FALSE 1 0.8 6 1.0
# 2: 4 TRUE 2 1.0 5 0.8
Run Code Online (Sandbox Code Playgroud)
实际的数字fields是5,我想避免分别为每个字段重复相同的代码,如果我修改过,必须编辑这个函数fields.请注意,这是这个问题的实质内容,支持计算在别处向我解释.
正如所引用的问题,我的数据集有大约10 ^ 7行,所以我真的需要一个扩展的解决方案; 如果我可以避免不必要的复制,那也很好users <- users[dt.out].
这会解决您的问题吗?
fields <- c("country","language")
dt <- data.table(user=c(rep(3, 5), rep(4, 5)),
behavior=c(rep(FALSE,5),rep(TRUE,5)),
country=c(rep(1,4),rep(2,6)),
language=c(rep(6,6),rep(5,4)),
event=1:10, key=c("user",fields))
CalculateSupport <- function(dt, name) {
x <- dt[, .N, by = eval(paste0('user,', name))]
setnames(x, name, 'name')
x <- x[, list(name[which.max(N)], max(N)/sum(N)), by = user]
setnames(x, c('V1', 'V2'), paste0(name, c(".name", ".support")))
x
}
users <- dt[, sum(behavior) > 0, by=user]
setnames(users, "V1", "behavior")
Reduce(function(x, name) x[CalculateSupport(dt, name)], fields, users)
Run Code Online (Sandbox Code Playgroud)
结果是
user behavior country.name country.support language.name language.support
1: 3 FALSE 1 0.8 6 1.0
2: 4 TRUE 2 1.0 5 0.8
Run Code Online (Sandbox Code Playgroud)
PS请认真对待里卡多对你的问题的评论.所以有很多很乐意帮助你的人,但是你必须得到很好的尊重.