vie*_*rcc 10 algorithm optimization numbers set
编辑:澄清问题的描述
是否有快速算法解决以下问题?
并且,也是对于这个问题的extendend版本,将自然数替换为Z /(2 ^ n Z)?(这个问题太复杂了,无法在一个地方添加更多问题,IMO.)
对于给定的一组自然数,如{ 7,20,17,100 },所需的算法返回最短的加法序列,多重和权力计算所有给定的数字.每个序列项都是(正确的)等式,符合以下模式:
<number> = <number> <op> <number>
Run Code Online (Sandbox Code Playgroud)
其中<number>是一个自然数,<op>是{+,*,^}之一.
在序列中,<op>的每个操作数应该是其中之一
Input: {7, 20, 17, 100}
Output:
2 = 1 + 1
3 = 1 + 2
6 = 2 * 3
7 = 1 + 6
10 = 3 + 7
17 = 7 + 10
20 = 2 * 10
100 = 10 ^ 2
Run Code Online (Sandbox Code Playgroud)
我在Haskell中写了回溯算法.它适用于像上面这样的小输入,但我的真实查询是随机分布的〜[0,255]中的30个数字.对于真正的查询,以下代码在我的电脑中需要2~10分钟.
-- generate set of sets required to compute n.
-- operater (+) on set is set union.
requiredNumbers 0 = { {} }
requiredNumbers 1 = { {} }
requiredNumbers n =
{ {j, k} | j^k == n, j >= 2, k >= 2 }
+ { {j, k} | j*k == n, j >= 2, k >= 2 }
+ { {j, k} | j+k == n, j >= 1, k >= 1 }
-- remember the smallest set of "computed" number
bestSet := {i | 1 <= i <= largeNumber}
-- backtracking algorithm
-- from: input
-- to: accumulator of "already computed" number
closure from to =
if (from is empty)
if (|bestSet| > |to|)
bestSet := to
return
else if (|from| + |to| >= |bestSet|)
-- cut branch
return
else
m := min(from)
from' := deleteMin(from)
foreach (req in (requiredNumbers m))
closure (from' + (req - to)) (to + {m})
-- recoverEquation is a function converts set of number to set of equation.
-- it can be done easily.
output = recoverEquation (closure input {})
Run Code Online (Sandbox Code Playgroud)
答案就像
也欢迎.现在我觉得没有快速准确的算法......
我认为答案#1可以用作启发式方法.
如果您从排序输入中的最高数字开始向后工作,检查是否/如何在其构造中利用较小的数字(以及正在引入的数字),会怎么样?
例如,虽然这可能不能保证最短的序列......
input: {7, 20, 17, 100}
(100) = (20) * 5 =>
(7) = 5 + 2 =>
(17) = 10 + (7) =>
(20) = 10 * 2 =>
10 = 5 * 2 =>
5 = 3 + 2 =>
3 = 2 + 1 =>
2 = 1 + 1
Run Code Online (Sandbox Code Playgroud)