为什么我的好奇重复模板模式(CRTP)不能引用派生类的typedef?

trb*_*abb 5 c++ gcc templates typedef crtp

当使用奇怪的重复模板模式时,只有当我尝试从基类引用它们时,我才能引用属于派生类的typedef ; gcc抱怨道no type named 'myType' in class Derived<...>.这似乎与使用typedef,模板和奇怪的重复关系的情况不一致.

考虑:

/* crtp.cpp */

#include <iostream>
using namespace std;

// case 1. simple.

class Base {
public:
    typedef int a_t;

    a_t foo;
};

class Derived : public Base {
    a_t bar;
};

// case 2. template.

template<typename T>
class tBase {
public:
    typedef T b_t;
    T foo;
};

template <typename T>
class tDerived : public tBase<T> {
    typename tBase<T>::b_t bar;
};

// case 3. curiously recurring.

template <typename T, typename D>
class tCuriousBase {
public:
    typedef T c_t;
    c_t foo;
};

template <typename T>
class tCuriousDerived : public tCuriousBase<T,tCuriousDerived<T> > {
    typename tCuriousBase<T,tCuriousDerived<T> >::c_t bar;
};

// case 4. curiously recurring with member reference.

template <typename T, typename D>
class tCuriousMemberBase {
public:
    T foo;

    T get() {
        return static_cast<D*>(this)->bar;
    }
};

template <typename T>
class tCuriousMemberDerived : public tCuriousMemberBase<T, tCuriousMemberDerived<T> > {
public:
    T bar;

    tCuriousMemberDerived(T val) : bar(val) {}
};

// case 5. curiously recurring with typedef reference.

template <typename T, typename D>
class tCuriousTypeBase {
public:
    typedef T d_t;
    d_t foo;
    typename D::c_t baz;
};

template <typename T>
class tCuriousTypeDerived : public tCuriousTypeBase<T, tCuriousTypeDerived<T> > {
public:
    typedef T c_t;
    typename tCuriousTypeBase<T,tCuriousTypeDerived<T> >::d_t bar;
};

// entry point

int main(int argc, char **argv) {
    Derived::a_t one = 1;
    tDerived<double>::b_t two = 2;
    tCuriousDerived<double>::c_t three = 3;
    double four = tCuriousMemberDerived<double>(4).get();
    tCuriousTypeBase<double, tCuriousDerived<double> >::d_t five = 5;
    // tCuriousTypeDerived<double>::d_t six = 6; /* FAILS */

    cout << one   << endl;
    cout << two   << endl; 
    cout << three << endl;
    cout << four  << endl;
    cout << five  << endl;
    // cout << six << endl;
}
Run Code Online (Sandbox Code Playgroud)

从(1)开始,我们看到typedef确实从base继承到派生; 可以通过派生类访问基类中声明的typedef.

从(2),我们看到如果两个类都是模板,这仍然是正确的.

从(3)开始,我们看到这种typedef继承仍然存在于奇怪的重复模板关系中; 我们通过声明中的派生类来引用base的typedef three.

从(4)开始,我们看到派生类的成员变量可以从基类中轻松访问.

从(5),我们看到我们可以访问在模板参数上定义的typedef(当我们声明five使用与继承无关的类型时,这是有效的).

然而,只要我们将模板参数设置为(6)中的派生类,就会突然使typedef变得不可访问,即使它看起来像派生类中的任何成员变量一样定义良好.

为什么是这样?

Emi*_*lia 9

这是"循环依赖",或"不完全类型"的改变.

模板"元编程"是"编程类型",但它需要知道某种级别的语义才能正确地实例化类型.

考虑一下这个比喻:

class A; //forwarded

class B
{
   A* pa; //good: we know how wide a pointer is, no matter if we don't know yet anything about A.
   A a; // bad: we don't know how much space it requires
};

class A
{
  float m;
}; // now we know, but it's too late
Run Code Online (Sandbox Code Playgroud)

这可以通过在B之前放置A来解决,但是如果A是

class A
{
   B m;
};
Run Code Online (Sandbox Code Playgroud)

除了指针之外没有其他解决方案,因为递归将是无限的.(A应该包含自己,不是指另一个副本)

现在,使用相同的类比,让我们的程序"类型":

template<class D>
class A
{
   typedef typename D::inner_type my_type; //required D to be known when A<D> is instantiated...
   my_type m; // ... otherwise we cannot know how wide A<D> will be.
};
Run Code Online (Sandbox Code Playgroud)

在我们开始将D定义为......之前,这个声明本身并不坏.

class D: //here we only know D exist
    public A<D> //but A size depende on D definition...
{
  ....
  typedef long double; inner_type
  ....
}; // ....we know only starting from here
Run Code Online (Sandbox Code Playgroud)

所以,基本上,我们还不知道(当时)A有多宽需要用它来创建D.

打破这种"循环"的一种方法是在CRT循环之外使用一些"特征类":

struct traits
{
   typedef long double inner_type;
   ....
};

template<class D, class Traits>
class A
{
  // this is easy: Traits does not depend itself on A
  typedef typename Traits::inner_type my_type;
  ....
};

template<class Traits>
class D: public A<D, Traits>
{
  typedef typename Traits::inner_type inner_type;
};
Run Code Online (Sandbox Code Playgroud)

我们终于可以宣布了

typedef D<traits> D_Inst;
Run Code Online (Sandbox Code Playgroud)

换句话说,之间的相干性A::my_typeD::inner_type通过保证traits::inner_type,其定义是独立的.