如何在scikit-learn中为OneVsRestClassifier设置类权重?

liz*_*isk 2 scikit-learn

我需要一个SVM作为多标签分类器,所以我决定使用OneVsRestClassifier包装器.然而,问题出现了训练集变得非常不平衡:对于给定的类,有更多的负面例子而不是正面.这可以通过class_weight参数来解决,但如果我在包裹在OneVsRestClassifier分类使用它,我得到一个错误:

from sklearn.svm import LinearSVC
from sklearn.multiclass import OneVsRestClassifier

weights = {'ham': 1, 'eggs': 2}
svm = OneVsRestClassifier(LinearSVC(class_weight=weights))

X = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 0]]
Y = [['ham'], [], ['eggs', 'spam'], ['spam'], ['eggs']]

svm.fit(X, Y)
Run Code Online (Sandbox Code Playgroud)
Traceback (most recent call last):
  File "", line 1, in 
  File "/usr/local/lib/python2.7/site-packages/sklearn/multiclass.py", line 197, in fit
    n_jobs=self.n_jobs)
  File "/usr/local/lib/python2.7/site-packages/sklearn/multiclass.py", line 87, in fit_ovr
    for i in range(Y.shape[1]))
  File "/usr/local/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.py", line 514, in __call__
    self.dispatch(function, args, kwargs)
  File "/usr/local/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.py", line 311, in dispatch
    job = ImmediateApply(func, args, kwargs)
  File "/usr/local/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.py", line 135, in __init__
    self.results = func(*args, **kwargs)
  File "/usr/local/lib/python2.7/site-packages/sklearn/multiclass.py", line 56, in _fit_binary
    estimator.fit(X, y)
  File "/usr/local/lib/python2.7/site-packages/sklearn/svm/base.py", line 681, in fit
    self.classes_, y)
  File "/usr/local/lib/python2.7/site-packages/sklearn/utils/class_weight.py", line 49, in compute_class_weight
    if classes[i] != c:
IndexError: index 2 is out of bounds for axis 0 with size 2
Run Code Online (Sandbox Code Playgroud)

And*_*bas 5

问题是LinearSVC需要二进制类[0,1].因此,为非二进制类('ham','egg'或甚至[0,1,2])赋予权重失败.但您可以使用"自动"权重,通过选择适当的权重自动"平衡"您的类.它也适用于您的多类OneVsRest分类器.

svm = OneVsRestClassifier(LinearSVC(class_weight='auto'))

X = [[1, 2], [3, 4], [5, 4]]
Y = [0,1,2]

svm.fit(X, Y)
Run Code Online (Sandbox Code Playgroud)

  • 有没有办法在OneVsRestClassifier中为每个标签分别提供sample_weight?由于GradientBoostingClassifier没有class_weight选项,因此需要为不平衡数据指定sample_weight. (3认同)