使用tm-package进行文本挖掘 - 词干

maj*_*jom 11 r text-mining tm

我正在使用tm-package 在R中进行一些文本挖掘.一切都很顺利.但是,在词干之后会出现一个问题(http://en.wikipedia.org/wiki/Stemming).显然,有些词语具有相同的词干,但重要的是它们不会"被拼凑"(因为这些词语意思不同).

有关示例,请参阅下面的4个文本.在这里你不能使用"讲师"或"讲座"("协会"和"联系人")可互换.但是,这是在步骤4中完成的操作.

是否有任何优雅的解决方案如何手动实现某些案例/单词(例如,"讲师"和"讲座"是两个不同的东西)?

texts <- c("i am member of the XYZ association",
"apply for our open associate position", 
"xyz memorial lecture takes place on wednesday", 
"vote for the most popular lecturer")

# Step 1: Create corpus
corpus <- Corpus(DataframeSource(data.frame(texts)))

# Step 2: Keep a copy of corpus to use later as a dictionary for stem completion
corpus.copy <- corpus

# Step 3: Stem words in the corpus
corpus.temp <- tm_map(corpus, stemDocument, language = "english")  

inspect(corpus.temp)

# Step 4: Complete the stems to their original form
corpus.final <- tm_map(corpus.temp, stemCompletion, dictionary = corpus.copy)  

inspect(corpus.final)
Run Code Online (Sandbox Code Playgroud)

Tyl*_*ker 12

我不是100%你所追求的,并不完全得到如何tm_map运作.如果我理解,那么以下工作.据我所知,你想提供一个不应该阻止的单词列表.我使用qdap包主要是因为我很懒,它有mgsub我喜欢的功能.

请注意,我很沮丧,使用mgsubtm_map它保持抛出一个错误,所以我只是用lapply代替.

texts <- c("i am member of the XYZ association",
    "apply for our open associate position", 
    "xyz memorial lecture takes place on wednesday", 
    "vote for the most popular lecturer")

library(tm)
# Step 1: Create corpus
corpus.copy <- corpus <- Corpus(DataframeSource(data.frame(texts)))

library(qdap)
# Step 2: list to retain and indentifier keys
retain <- c("lecturer", "lecture")
replace <- paste(seq_len(length(retain)), "SPECIAL_WORD", sep="_")

# Step 3: sub the words you want to retain with identifier keys
corpus[seq_len(length(corpus))] <- lapply(corpus, mgsub, pattern=retain, replacement=replace)

# Step 4: Stem it
corpus.temp <- tm_map(corpus, stemDocument, language = "english")  

# Step 5: reverse -> sub the identifier keys with the words you want to retain
corpus.temp[seq_len(length(corpus.temp))] <- lapply(corpus.temp, mgsub, pattern=replace, replacement=retain)

inspect(corpus)       #inspect the pieces for the folks playing along at home
inspect(corpus.copy)
inspect(corpus.temp)

# Step 6: complete the stem
corpus.final <- tm_map(corpus.temp, stemCompletion, dictionary = corpus.copy)  
inspect(corpus.final)
Run Code Online (Sandbox Code Playgroud)

基本上它的工作原理是:

  1. 为所提供的"NO STEM"字词(the mgsub)提供唯一标识符密钥
  2. 然后你干(使用stemDocument)
  3. 接下来你将它反转并用"NO STEM"字样(mgsub)分辨标识符键
  4. 最后完成干(stemCompletion)

这是输出:

## >     inspect(corpus.final)
## A corpus with 4 text documents
## 
## The metadata consists of 2 tag-value pairs and a data frame
## Available tags are:
##   create_date creator 
## Available variables in the data frame are:
##   MetaID 
## 
## $`1`
## i am member of the XYZ associate
## 
## $`2`
##  for our open associate position
## 
## $`3`
## xyz memorial lecture takes place on wednesday
## 
## $`4`
## vote for the most popular lecturer
Run Code Online (Sandbox Code Playgroud)