cjd*_*jds 2 python nltk maxent
我一直在python中使用maxent分类器,它失败了,我不明白为什么.
我正在使用电影评论语料库.(总菜鸟)
import nltk.classify.util
from nltk.classify import MaxentClassifier
from nltk.corpus import movie_reviews
def word_feats(words):
return dict([(word, True) for word in words])
negids = movie_reviews.fileids('neg')
posids = movie_reviews.fileids('pos')
negfeats = [(word_feats(movie_reviews.words(fileids=[f])), 'neg') for f in negids]
posfeats = [(word_feats(movie_reviews.words(fileids=[f])), 'pos') for f in posids]
negcutoff = len(negfeats)*3/4
poscutoff = len(posfeats)*3/4
trainfeats = negfeats[:negcutoff] + posfeats[:poscutoff]
classifier = MaxentClassifier.train(trainfeats)
Run Code Online (Sandbox Code Playgroud)
这是错误(我知道我做错了,请链接到Maxent如何工作)
警告(来自警告模块):文件"C:\ Python27\lib\site-packages \nltk\classify\maxent.py",第1334行sum1 = numpy.sum(exp_nf_delta*A,axis = 0)运行时警告:遇到无效值乘以
警告(来自警告模块):文件"C:\ Python27\lib\site-packages \nltk\classify\maxent.py",第1335行sum2 = numpy.sum(nf_exp_nf_delta*A,axis = 0)运行时警告:遇到无效值乘以
警告(来自警告模块):文件"C:\ Python27\lib\site-packages \nltk\classify\maxent.py",第1341行deltas - =(ffreq_empirical - sum1)/ -sum2 RuntimeWarning:在div中遇到无效值
我改变并稍微更新了代码.
import nltk, nltk.classify.util, nltk.metrics
from nltk.classify import MaxentClassifier
from nltk.collocations import BigramCollocationFinder
from nltk.metrics import BigramAssocMeasures
from nltk.probability import FreqDist, ConditionalFreqDist
from sklearn import cross_validation
from nltk.classify import MaxentClassifier
from nltk.corpus import movie_reviews
def word_feats(words):
return dict([(word, True) for word in words])
negids = movie_reviews.fileids('neg')
posids = movie_reviews.fileids('pos')
negfeats = [(word_feats(movie_reviews.words(fileids=[f])), 'neg') for f in negids]
posfeats = [(word_feats(movie_reviews.words(fileids=[f])), 'pos') for f in posids]
negcutoff = len(negfeats)*3/4
poscutoff = len(posfeats)*3/4
trainfeats = negfeats[:negcutoff] + posfeats[:poscutoff]
#classifier = nltk.MaxentClassifier.train(trainfeats)
algorithm = nltk.classify.MaxentClassifier.ALGORITHMS[0]
classifier = nltk.MaxentClassifier.train(trainfeats, algorithm,max_iter=3)
classifier.show_most_informative_features(10)
all_words = nltk.FreqDist(word for word in movie_reviews.words())
top_words = set(all_words.keys()[:300])
def word_feats(words):
return {word:True for word in words if word in top_words}
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
8838 次 |
最近记录: |