加权平均死锁:值取决于值

Dav*_*vid 6 sql algorithm math sql-server-2008

一些背景有助于首先解释这个难题:

我有一个数据库,通过比较他们提交给全球平均值的值来估计用户的可靠性.值范围介于0和1之间.所以,其中:

  • 这个特定用户的可靠性= r
  • 此特定用户提交的值的平均值= a
  • 全球,"同意"平均= g

可靠性:

r = 1 - ABS(g - a)
Run Code Online (Sandbox Code Playgroud)

这就是计算每个用户的可靠性的方式.现在,全球"同意"的平均值g是使用加权平均值计算的,其中权重是r和,值是a.如果总共有3个用户:

  g = ((r1 * a1) + (r2 * a2) + (r3 * a3)) / (r1 + r2 + r3)
Run Code Online (Sandbox Code Playgroud)

问题是,一旦用户具有高可靠性,他们就完全垄断,没有新的价值可以改变这一点.举个例子:

g was initially 0.5
user1 r was initially 0.5
user2 r was initially 0.5
user3 r was initially 0.5
Run Code Online (Sandbox Code Playgroud)

现在,他们将逐个提交值,并观察发生的情况:

user1 a is submitted, 1.0
user1 reliability goes slightly down because it differs from g (0.5)
user2 a is submitted, 1.0
user1 and user2 reliability go up to 100%, g is now 1.0.
user3 a is submitted, 0.0
user3 reliability goes down to 0%. g is still 1.0.
Run Code Online (Sandbox Code Playgroud)

由于user3具有非常低的可靠性,因此加权完全没有任何影响g.User3的可靠性下降,因为提交的值与全球平均值完全不同.如何使user3的提交对最终值产生一些影响?也许我需要添加一些常量,以便可靠性永远不会完全为零(但接近)?

现在,对于SQL代码.我添加了一个SQL小提琴来演示这个问题:http: //sqlfiddle.com/#!3/d3fd1/21 我已经抽象了代码以保持它的简短,但它仍然很长.

表创建,存储过程和触发器:

-- Stores user info
CREATE TABLE dbo.Users(
    [UserID] [int] NOT NULL,
    [Reliability] [float] NOT NULL
  )

-- Contains global averages from all users who submitted data
CREATE TABLE dbo.GlobalSubmission(
    GlobalSubmissionID  [int] NOT NULL,
    Name [varchar](50) NULL,
    GlobalAverage [float] NOT NULL,
)

CREATE TABLE dbo.UserSubmission(
    SubValue float NOT NULL,
    GlobalSubmissionID int NOT NULL,
    UserID int NOT NULL,
)


GO

--Calculate the "ideal value", used for GlobalSubmission.
CREATE FUNCTION dbo.IdealValueCalc(@globalSubmissionID INT)
RETURNS int
AS
BEGIN

DECLARE @tmpReliability TABLE (SubValue float, Reliability float)


INSERT INTO @tmpReliability
    SELECT AVG(us.SubValue) as SubValue, usr.Reliability Reliability FROM UserSubmission us
    JOIN Users usr 
    ON us.UserID = usr.UserID
    WHERE GlobalSubmissionID = @GlobalSubmissionID
    GROUP BY us.UserID, usr.Reliability

--Perform weighted mean calculations.
Return (SELECT SUM(SubValue * Reliability) / SUM(Reliability) FROM @tmpReliability)
END
go


--Calculate the reliability of one user.
CREATE FUNCTION dbo.GetReliabilityForUser
(@userID int)
Returns Float
AS BEGIN
Return (SELECT 1 - AVG(ABS(db.userAvg - db.GlobalAverage))
    FROM (
      SELECT pmd.UserID,
            gs.GlobalAverage, 
            AVG(pmd.SubValue) as userAvg
      FROM UserSubmission pmd
      -- Joins average value for each user with "ideal" value from GlobalSubmission
      JOIN GlobalSubmission gs 
        ON gs.GlobalSubmissionID = pmd.GlobalSubmissionID
        WHERE pmd.UserID = 1
      GROUP BY pmd.UserID, gs.GlobalSubmissionID, gs.GlobalAverage
     ) db
     GROUP BY db.UserID)
End
go



CREATE TRIGGER trg_SubmissionComputation
ON UserSubmission 
AFTER INSERT, UPDATE
AS BEGIN
    --Calculate this uer's reliability
    DECLARE @userID int = (SELECT TOP(1) UserID FROM inserted)
    DECLARE @userReliability float = dbo.GetReliabilityForUser(@userID)

    UPDATE Users
    SET Reliability=@userReliability
    WHERE UserID = @userID

    --Recalculate globalSubmission values:
    DECLARE @globalSubmissionID int = (SELECT TOP(1) GlobalSubmissionID FROM inserted)
    DECLARE @globalAverage float = dbo.IdealValueCalc(@globalSubmissionID)
        --The global average for this set of submissions has been recalculated. Now inserting:

    UPDATE GlobalSubmission
    SET GlobalAverage = @globalAverage 
    WHERE GlobalSubmissionID = @globalSubmissionID
END
GO
Run Code Online (Sandbox Code Playgroud)

测试它:

--Creating 3 new users
INSERT INTO Users
(UserID, Reliability)
values 
(1, 0.5),
(2, 0.5),
(3, 0.5)
GO

--Creating a new GlobalSubmission
INSERT INTO GlobalSubmission
(GlobalSubmissionID, NAME, GlobalAverage)
values (1, 'BOILER2B' , 0.5)
GO

--First, we will submit values of 1 for two users:
INSERT INTO UserSubmission values (1.0, 1, 1); -- Value: 1.0, User 1, Submission 1
GO
INSERT INTO UserSubmission values (1.0, 1, 2); -- Value: 1.0, User 2, Submission 1
GO
INSERT INTO UserSubmission values (1.0, 1, 1); -- Value: 1.0, User 1, Submission 1
GO
INSERT INTO UserSubmission values (1.0, 1, 2); -- Value: 1.0, User 2, Submission 1
GO


--Now, we will submit values of 0 for the third user:
INSERT INTO UserSubmission values (0.0, 1, 3); -- Value: 0.0, User 3, Submission 1
GO
INSERT INTO UserSubmission values (0.0, 1, 3); -- Value: 0.0, User 3, Submission 1
GO

SELECT * FROM Users -- This results in 0% reliability for the last user.

--If we create new users and add them, the reliability won't budge:
INSERT INTO Users
(UserID, Reliability)
values 
(4, 0.5),
(5, 0.5),
(6, 0.5),
(7, 0.5),
(8, 0.5)
GO


INSERT INTO UserSubmission values (0, 1, 4); -- Value: 0, User 4, Submission 1
GO
INSERT INTO UserSubmission values (0, 1, 5); -- Value: 0, User 5, Submission 1
GO
INSERT INTO UserSubmission values (0, 1, 6); -- Value: 0, User 6, Submission 1
GO
INSERT INTO UserSubmission values (0, 1, 7); -- Value: 0, User 7, Submission 1
GO
INSERT INTO UserSubmission values (0, 1, 8); -- Value: 0, User 8, Submission 1
GO
INSERT INTO UserSubmission values (0, 1, 4); -- Value: 0, User 4, Submission 1
GO
INSERT INTO UserSubmission values (0, 1, 5); -- Value: 0, User 5, Submission 1
GO
INSERT INTO UserSubmission values (0, 1, 6); -- Value: 0, User 6, Submission 1
GO
INSERT INTO UserSubmission values (0, 1, 7); -- Value: 0, User 7, Submission 1
GO
INSERT INTO UserSubmission values (0, 1, 8); -- Value: 0, User 8, Submission 1
GO


SELECT * FROM Users -- Even though we've added loads of new users suggesting 0 as value, the final value
-- is remaining 1.0, because when a new value (0) is submitted, it varies too much from the global average
--(1), causing the reliability of that user to go down, and that user ends up making no influence on the
-- global average!
Run Code Online (Sandbox Code Playgroud)

mcd*_*lla 1

这是一个替代估计,它仍然有点临时,但不会产生权重 0。

1) 对于每个用户,产生平方误差的指数衰减估计。从可调任意估计 K 开始。然后,每次用户生成值 a 且组平均值为 g 时,都会产生平方误差 E = (a - g) * (a - g) 并将平方误差的估计从之前更改为after = before * x + E * (1 - x) 其中 x 是另一个介于 0 和 1 之间的可调常数,用于调整旧估计衰减的速度。这个估计永远不可能完全降到零,但由于下一步,最好阻止它降低到某个可调值以下。

2) 要获得新的全局估计,请像以前一样使用加权平均值,但使权重为该用户当前平方误差估计的倒数。

如果所有用户都是无偏的,那么指数衰减估计可能最终会成为每个用户平均平方误差的合理估计,然后权重将是估计的线性组合,它最小化了全局估计的预期平方误差。检查:如果不同的用户我从同一来源提交了 Ni 估计的平均值,那么每个用户估计的均方误差将为 1/Ni,因此乘以该值的倒数会将他们的平均值变成每个用户产生的估计的原始总和用户和加权估计最终只会汇集估计值。