我是python的新手,天真地为以下任务编写了一个python脚本:
我想创建一个包含多个对象的单词表示.每个对象基本上是一对和一袋词的概要表示.因此,对象将转换为最终文档.
这是脚本:
import re
import math
import itertools
from nltk.corpus import stopwords
from nltk import PorterStemmer
from collections import defaultdict
from collections import Counter
from itertools import dropwhile
import sys, getopt
inp = "inp_6000.txt" #input file name
out = "bowfilter10" #output file name
with open(inp,'r') as plot_data:
main_dict = Counter()
file1, file2 = itertools.tee(plot_data, 2)
line_one = itertools.islice(file1, 0, None, 4)
line_two = itertools.islice(file2, 2, None, 4)
dictionary = defaultdict(Counter)
doc_count = defaultdict(Counter)
for movie_name, movie_plot in itertools.izip(line_one, line_two):
movie_plot = movie_plot.lower()
words = re.findall(r'\w+', movie_plot, flags = re.UNICODE | re.LOCALE) #split words
elemStopW = filter(lambda x: x not in stopwords.words('english'), words) #remove stop words, python nltk
for word in elemStopW:
word = PorterStemmer().stem_word(word) #use python stemmer class to do stemming
#increment the word count of the movie in the particular movie synopsis
dictionary[movie_name][word] += 1
#increment the count of a partiular word in main dictionary which stores frequency of all documents.
main_dict[word] += 1
#This is done to calculate term frequency inverse document frequency. Takes note of the first occurance of the word in the synopsis and neglect all other.
if doc_count[word]['this_mov']==0:
doc_count[word].update(count=1, this_mov=1);
for word in doc_count:
doc_count[word].update(this_mov=-1)
#print "---------main_dict---------"
#print main_dict
#Remove all the words with frequency less than 5 in whole set of movies
for key, count in dropwhile(lambda key_count: key_count[1] >= 5, main_dict.most_common()):
del main_dict[key]
#print main_dict
.#Write to file
bow_vec = open(out, 'w');
#calculate the the bog vector and write it
m = len(dictionary)
for movie_name in dictionary.keys():
#print movie_name
vector = []
for word in list(main_dict):
#print word, dictionary[movie_name][word]
x = dictionary[movie_name][word] * math.log(m/doc_count[word]['count'], 2)
vector.append(x)
#write to file
bow_vec.write("%s" % movie_name)
for item in vector:
bow_vec.write("%s," % item)
bow_vec.write("\n")
Run Code Online (Sandbox Code Playgroud)
数据文件的格式和有关数据的其他信息:数据文件具有以下格式:
电影名称.空行.电影简介(可以假设大小约为150字)空行.
注意:<*>用于表示.
输入
文件的大小:文件大小约为200 MB.
到目前为止,这个脚本在3 GHz Intel处理器上大约需要10-12小时.
注意:我正在寻找串行代码的改进.我知道并行化会改进它,但我想稍后再研究它.我想借此机会使这个串行代码更有效率.
任何帮助赞赏.
首先 - 尝试删除正则表达式,它们很重.我最初的建议是糟糕的 - 它不会有效.也许,这会更有效率
trans_table = string.maketrans(string.string.punctuation,
' '*len(string.punctuation)).lower()
words = movie_plot.translate(trans_table).split()
Run Code Online (Sandbox Code Playgroud)
(事后的想法)我无法测试它,但我认为如果你将这个调用的结果存储在一个变量中
stops = stopwords.words('english')
Run Code Online (Sandbox Code Playgroud)
或者可能更好 - 首先将其转换为set(如果函数没有返回一个)
stops = set(stopwords.words('english'))
Run Code Online (Sandbox Code Playgroud)
你也会得到一些改善
(在评论中回答你的问题)每个函数调用都会消耗时间; 如果你获得大量的数据而不是你没有永久使用的数据 - 浪费时间可能会很大对于set vs list - 比较结果:
In [49]: my_list = range(100)
In [50]: %timeit 10 in my_list
1000000 loops, best of 3: 193 ns per loop
In [51]: %timeit 101 in my_list
1000000 loops, best of 3: 1.49 us per loop
In [52]: my_set = set(my_list)
In [53]: %timeit 101 in my_set
10000000 loops, best of 3: 45.2 ns per loop
In [54]: %timeit 10 in my_set
10000000 loops, best of 3: 47.2 ns per loop
Run Code Online (Sandbox Code Playgroud)
虽然我们处于油腻的细节 - 这里是拆分与RE的测量
In [30]: %timeit words = 'This is a long; and meaningless - sentence'.split(split_let)
1000000 loops, best of 3: 271 ns per loop
In [31]: %timeit words = re.findall(r'\w+', 'This is a long; and meaningless - sentence', flags = re.UNICODE | re.LOCALE)
100000 loops, best of 3: 3.08 us per loop
Run Code Online (Sandbox Code Playgroud)