优化python脚本提取和处理大型数据文件

Ama*_*tam 0 python nltk

我是python的新手,天真地为以下任务编写了一个python脚本:

我想创建一个包含多个对象的单词表示.每个对象基本上是一对和一袋词的概要表示.因此,对象将转换为最终文档.

这是脚本:

import re
import math
import itertools
from nltk.corpus import stopwords
from nltk import PorterStemmer
from collections import defaultdict
from collections import Counter
from itertools import dropwhile

import sys, getopt

inp = "inp_6000.txt"  #input file name
out = "bowfilter10"   #output file name
with open(inp,'r') as plot_data:
    main_dict = Counter()
    file1, file2 = itertools.tee(plot_data, 2)
    line_one = itertools.islice(file1, 0, None, 4)
    line_two = itertools.islice(file2, 2, None, 4)
    dictionary = defaultdict(Counter)
    doc_count = defaultdict(Counter)
    for movie_name, movie_plot in itertools.izip(line_one, line_two):
        movie_plot = movie_plot.lower()
        words = re.findall(r'\w+', movie_plot, flags = re.UNICODE | re.LOCALE)  #split words
        elemStopW = filter(lambda x: x not in stopwords.words('english'), words)   #remove stop words, python nltk
        for word in elemStopW:
            word = PorterStemmer().stem_word(word)   #use python stemmer class to do stemming
            #increment the word count of the movie in the particular movie synopsis
            dictionary[movie_name][word] += 1
            #increment the count of a partiular word in main dictionary which stores frequency of all documents.       
            main_dict[word] += 1
            #This is done to calculate term frequency inverse document frequency. Takes note of the first occurance of the word in the synopsis and neglect all other.
            if doc_count[word]['this_mov']==0:
                doc_count[word].update(count=1, this_mov=1);
        for word in doc_count:
            doc_count[word].update(this_mov=-1)
    #print "---------main_dict---------"
    #print main_dict
    #Remove all the words with frequency less than 5 in whole set of movies
    for key, count in dropwhile(lambda key_count: key_count[1] >= 5, main_dict.most_common()):
        del main_dict[key]
    #print main_dict
   .#Write to file
    bow_vec = open(out, 'w');
    #calculate the the bog vector and write it
    m = len(dictionary)
    for movie_name in dictionary.keys():
        #print movie_name
        vector = []
        for word in list(main_dict):
            #print word, dictionary[movie_name][word]
            x = dictionary[movie_name][word] * math.log(m/doc_count[word]['count'], 2)
            vector.append(x)
        #write to file
        bow_vec.write("%s" % movie_name)
        for item in vector:
            bow_vec.write("%s," % item)
        bow_vec.write("\n")
Run Code Online (Sandbox Code Playgroud)

数据文件的格式和有关数据的其他信息:数据文件具有以下格式:

电影名称.空行.电影简介(可以假设大小约为150字)空行.

注意:<*>用于表示.

输入
文件的大小:文件大小约为200 MB.

到目前为止,这个脚本在3 GHz Intel处理器上大约需要10-12小时.

注意:我正在寻找串行代码的改进.我知道并行化会改进它,但我想稍后再研究它.我想借此机会使这个串行代码更有效率.

任何帮助赞赏.

vol*_*ano 5

首先 - 尝试删除正则表达式,它们很重.我最初的建议是糟糕的 - 它不会有效.也许,这会更有效率

trans_table = string.maketrans(string.string.punctuation, 
                               ' '*len(string.punctuation)).lower()
words = movie_plot.translate(trans_table).split()
Run Code Online (Sandbox Code Playgroud)

(事后的想法)我无法测试它,但我认为如果你将这个调用的结果存储在一个变量中

stops = stopwords.words('english')
Run Code Online (Sandbox Code Playgroud)

或者可能更好 - 首先将其转换为set(如果函数没有返回一个)

stops = set(stopwords.words('english'))
Run Code Online (Sandbox Code Playgroud)

你也会得到一些改善

(在评论中回答你的问题)每个函数调用都会消耗时间; 如果你获得大量的数据而不是你没有永久使用的数据 - 浪费时间可能会很大对于set vs list - 比较结果:

In [49]: my_list = range(100)

In [50]: %timeit 10 in my_list
1000000 loops, best of 3: 193 ns per loop

In [51]: %timeit 101 in my_list
1000000 loops, best of 3: 1.49 us per loop

In [52]: my_set = set(my_list)

In [53]: %timeit 101 in my_set
10000000 loops, best of 3: 45.2 ns per loop

In [54]: %timeit 10 in my_set
10000000 loops, best of 3: 47.2 ns per loop
Run Code Online (Sandbox Code Playgroud)

虽然我们处于油腻的细节 - 这里是拆分与RE的测量

In [30]: %timeit words = 'This is a long; and meaningless - sentence'.split(split_let)
1000000 loops, best of 3: 271 ns per loop

In [31]: %timeit words = re.findall(r'\w+', 'This is a long; and meaningless - sentence', flags = re.UNICODE | re.LOCALE)
100000 loops, best of 3: 3.08 us per loop
Run Code Online (Sandbox Code Playgroud)