pys*_*ing 7 concurrency haskell thread-safety atomicity
IORef
s,MVar
s和TVar
s可用于在并发上下文中包装共享变量.我已经研究了并发haskell一段时间了,现在我已经解决了一些问题.在stackoverflow上搜索并阅读了一些相关问题后,我的问题没有完全解决.
IORef
文档,"将原子性扩展到多个IORefs是有问题的",有人可以帮助解释为什么单个IORef
是安全的但不止一个IORef
是有问题的吗?modifyMVar
是"异常安全,但只有原子,如果没有其他生产者为这个MVar".查看MVar
的文档.源代码显示modifyMVar
只组成a getMVar
和putMVar
顺序,表明如果有另一个生产者,它是注意线程安全的.但是如果没有生产者并且所有线程都以" takeMVar
然后putMVar
"的方式运行,那么简单地使用它是否是线程安全的modifyMVar
?为了给出具体情况,我将展示实际问题.我有一些永远不会为空的共享变量,我希望它们是可变状态,因此一些线程可以同时修改这些变量.
好吧,似乎可以TVar
清楚地解决所有问题.但我对此并不满意,我渴望得到上述问题的答案.任何帮助表示赞赏.
-------------- re:@GabrielGonzalez BFS界面代码------------------
下面的代码是我使用状态monad的BFS接口.
{-# LANGUAGE TypeFamilies, FlexibleContexts #-}
module Data.Graph.Par.Class where
import Data.Ix
import Data.Monoid
import Control.Concurrent
import Control.Concurrent.MVar
import Control.Monad
import Control.Monad.Trans.State
class (Ix (Vertex g), Ord (Edge g), Ord (Path g)) => ParGraph g where
type Vertex g :: *
type Edge g :: *
-- type Path g :: * -- useless
type VertexProperty g :: *
type EdgeProperty g :: *
edges :: g a -> IO [Edge g]
vertexes :: g a -> IO [Vertex g]
adjacencies :: g a -> Vertex g -> IO [Vertex g]
vertexProperty :: Vertex g -> g a -> IO (VertexProperty g)
edgeProperty :: Edge g -> g a -> IO (EdgeProperty g)
atomicModifyVertexProperty :: (VertexProperty g -> IO (VertexProperty g)) ->
Vertex g -> g a -> IO (g a) -- fixed
spanForest :: ParGraph g => [Vertex g] -> StateT (g a) IO ()
spanForest roots = parallelise (map spanTree roots) -- parallel version
spanForestSeq :: ParGraph g => [Vertex g] -> StateT (g a) IO ()
spanForestSeq roots = forM_ roots spanTree -- sequencial version
spanTree :: ParGraph g => Vertex g -> StateT (g a) IO ()
spanTree root = spanTreeOneStep root >>= \res -> case res of
[] -> return ()
adjs -> spanForestSeq adjs
spanTreeOneStep :: ParGraph g => Vertex g -> StateT (g a) IO [Vertex g]
spanTreeOneStep v = StateT $ \g -> adjacencies g v >>= \adjs -> return (adjs, g)
parallelise :: (ParGraph g, Monoid b) => [StateT (g a) IO b] -> StateT (g a) IO b
parallelise [] = return mempty
parallelise ss = syncGraphOp $ map forkGraphOp ss
forkGraphOp :: (ParGraph g, Monoid b) => StateT (g a) IO b -> StateT (g a) IO (MVar b)
forkGraphOp t = do
s <- get
mv <- mapStateT (forkHelper s) t
return mv
where
forkHelper s x = do
mv <- newEmptyMVar
forkIO $ x >>= \(b, s) -> putMVar mv b
return (mv, s)
syncGraphOp :: (ParGraph g, Monoid b) => [StateT (g a) IO (MVar b)] -> StateT (g a) IO b
syncGraphOp [] = return mempty
syncGraphOp ss = collectMVars ss >>= waitResults
where
collectMVars [] = return []
collectMVars (x:xs) = do
mvx <- x
mvxs <- collectMVars xs
return (mvx:mvxs)
waitResults mvs = StateT $ \g -> forM mvs takeMVar >>= \res -> return ((mconcat res), g)
Run Code Online (Sandbox Code Playgroud)
现代处理器提供比较和交换指令,以原子方式修改单个指针.我希望如果你追踪得足够深,你会发现这条指令是用来实现的atomicModifyIORef
.因此,很容易为单个指针提供原子访问.但是,由于没有对多个指针的硬件支持,无论您需要什么都必须在软件中完成.这通常涉及在所有线程中发明并手动执行协议 - 这很复杂且容易出错.
是的,如果所有线程同意仅使用"单一takeMVar
后跟单一putMVar
"行为,则modifyMVar
是安全的.