Numpy:考虑项目的邻居及其在阵列中的位置的快速计算

die*_*ogb 6 python numpy

我有4个2D numpy数组,称为a, b, c, d每个数组由n行和m列组成.我需要做的是给每个元素bd一个如下计算的值(伪代码):

min_coords = min_of_neighbors_coords(x, y)
b[x,y] = a[x,y] * a[min_coords];
d[x,y] = c[min_coords];
Run Code Online (Sandbox Code Playgroud)

min_of_neighbors_coords给定数组元素坐标的函数在哪里返回具有较低值的'neighbor'元素的坐标.即,考虑到阵列:

1, 2, 5
3, 7, 2
2, 3, 6
Run Code Online (Sandbox Code Playgroud)

min_of_neighbors_coords(1, 1)将引用具有值的中心元素7,并将返回元组(0, 0):数字的坐标1.

我设法使用for循环(每个元素的元素),但算法非常慢,我正在寻找一种方法来改进它,避免循环,并要求计算numpy.

可能吗?

Jai*_*ime 5

编辑我把我的原始答案保留在底部.正如保罗在评论中指出的那样,最初的答案并没有真正回答OP的问题,并且可以通过ndimage过滤器更轻松地实现.以下更麻烦的功能应该做正确的事情.它需要两个数组,a并且c,在窗口最小值的位置返回窗口最小值a和值:ca

def neighbor_min(a, c):
    ac = np.concatenate((a[None], c[None]))
    rows, cols = ac.shape[1:]
    ret = np.empty_like(ac)

    # Fill in the center
    win_ac = as_strided(ac, shape=(2, rows-2, cols, 3),
                        strides=ac.strides+ac.strides[1:2])
    win_ac = win_ac[np.ogrid[:2, :rows-2, :cols] +
                    [np.argmin(win_ac[0], axis=2)]]
    win_ac = as_strided(win_ac, shape=(2, rows-2, cols-2, 3),
                        strides=win_ac.strides+win_ac.strides[2:3])
    ret[:, 1:-1, 1:-1] =  win_ac[np.ogrid[:2, :rows-2, :cols-2] +
                                 [np.argmin(win_ac[0], axis=2)]]

    # Fill the top, bottom, left and right borders
    win_ac = as_strided(ac[:, :2, :], shape=(2, 2, cols-2, 3),
                        strides=ac.strides+ac.strides[2:3])
    win_ac = win_ac[np.ogrid[:2, :2, :cols-2] +
                    [np.argmin(win_ac[0], axis=2)]]
    ret[:, 0, 1:-1] = win_ac[:, np.argmin(win_ac[0], axis=0),
                             np.ogrid[:cols-2]]
    win_ac = as_strided(ac[:, -2:, :], shape=(2, 2, cols-2, 3),
                        strides=ac.strides+ac.strides[2:3])
    win_ac = win_ac[np.ogrid[:2, :2, :cols-2] +
                    [np.argmin(win_ac[0], axis=2)]]
    ret[:, -1, 1:-1] = win_ac[:, np.argmin(win_ac[0], axis=0),
                             np.ogrid[:cols-2]]
    win_ac = as_strided(ac[:, :, :2], shape=(2, rows-2, 2, 3),
                        strides=ac.strides+ac.strides[1:2])
    win_ac = win_ac[np.ogrid[:2, :rows-2, :2] +
                    [np.argmin(win_ac[0], axis=2)]]
    ret[:, 1:-1, 0] = win_ac[:, np.ogrid[:rows-2],
                             np.argmin(win_ac[0], axis=1)]
    win_ac = as_strided(ac[:, :, -2:], shape=(2, rows-2, 2, 3),
                        strides=ac.strides+ac.strides[1:2])
    win_ac = win_ac[np.ogrid[:2, :rows-2, :2] +
                    [np.argmin(win_ac[0], axis=2)]]
    ret[:, 1:-1, -1] = win_ac[:, np.ogrid[:rows-2],
                             np.argmin(win_ac[0], axis=1)]
    # Fill the corners
    win_ac = ac[:, :2, :2]
    win_ac = win_ac[:, np.ogrid[:2],
                    np.argmin(win_ac[0], axis=-1)]
    ret[:, 0, 0] = win_ac[:, np.argmin(win_ac[0], axis=-1)]
    win_ac = ac[:, :2, -2:]
    win_ac = win_ac[:, np.ogrid[:2],
                    np.argmin(win_ac[0], axis=-1)]
    ret[:, 0, -1] = win_ac[:, np.argmin(win_ac[0], axis=-1)]
    win_ac = ac[:, -2:, -2:]
    win_ac = win_ac[:, np.ogrid[:2],
                    np.argmin(win_ac[0], axis=-1)]
    ret[:, -1, -1] = win_ac[:, np.argmin(win_ac[0], axis=-1)]
    win_ac = ac[:, -2:, :2]
    win_ac = win_ac[:, np.ogrid[:2],
                    np.argmin(win_ac[0], axis=-1)]
    ret[:, -1, 0] = win_ac[:, np.argmin(win_ac[0], axis=-1)]

    return ret
Run Code Online (Sandbox Code Playgroud)

返回是一个(2, rows, cols)可以解压缩到两个数组中的数组:

>>> a = np.random.randint(100, size=(5,5))
>>> c = np.random.randint(100, size=(5,5))
>>> a
array([[42, 54, 18, 88, 26],
       [80, 65, 83, 31,  4],
       [51, 52, 18, 88, 52],
       [ 1, 70,  5,  0, 89],
       [47, 34, 27, 67, 68]])
>>> c
array([[94, 94, 29,  6, 76],
       [81, 47, 67, 21, 26],
       [44, 92, 20, 32, 90],
       [81, 25, 32, 68, 25],
       [49, 43, 71, 79, 77]])
>>> neighbor_min(a, c)
array([[[42, 18, 18,  4,  4],
        [42, 18, 18,  4,  4],
        [ 1,  1,  0,  0,  0],
        [ 1,  1,  0,  0,  0],
        [ 1,  1,  0,  0,  0]],

       [[94, 29, 29, 26, 26],
        [94, 29, 29, 26, 26],
        [81, 81, 68, 68, 68],
        [81, 81, 68, 68, 68],
        [81, 81, 68, 68, 68]]])
Run Code Online (Sandbox Code Playgroud)

OP的案例可以解决为:

def bd_from_ac(a, c):
    b,d = neighbor_min(a, c)
    return a*b, d
Run Code Online (Sandbox Code Playgroud)

虽然性能受到严重打击,但仍然很快:

In [3]: a = np.random.rand(1000, 1000)

In [4]: c = np.random.rand(1000, 1000)

In [5]: %timeit bd_from_ac(a, c)
1 loops, best of 3: 570 ms per loop
Run Code Online (Sandbox Code Playgroud)

除了获取它之外,您并没有真正使用最小邻近元素的坐标,因此您也可以跳过该部分并创建一个min_neighbor函数.如果您不想使用cython进行快速循环,则必须使用滚动窗口视图,例如Paul的链接中所述.这通常会将您的(m, n)数组转换为(m-2, n-2, 3, 3)相同数据的视图,然后您将应用于np.min最后两个轴.

不幸的是,您必须一次应用一个轴,因此您必须创建(m-2, n-2, 3)数据的副本.幸运的是,您可以分两步计算最小值,首先是沿一个轴进行窗口化和最小化,然后沿另一个轴进行最小化,并获得相同的结果.因此,最多您将获得与输入大小相当的中间存储空间.如果需要,您甚至可以将输出数组重用为中间存储并避免内存分配,但这仍然是练习 ...

以下功能可以做到这一点.它有点冗长,因为它不仅要处理中心区域,还要处理四个边缘和四个角落的特殊情况.除此之外,它是一个非常紧凑的实现:

def neighbor_min(a):
    rows, cols = a.shape
    ret = np.empty_like(a)

    # Fill in the center
    win_a = as_strided(a, shape=(m-2, n, 3),
                       strides=a.strides+a.strides[:1])
    win_a = win_a.min(axis=2)
    win_a = as_strided(win_a, shape=(m-2, n-2, 3),
                       strides=win_a.strides+win_a.strides[1:])
    ret[1:-1, 1:-1] = win_a.min(axis=2)

    # Fill the top, bottom, left and right borders
    win_a = as_strided(a[:2, :], shape=(2, cols-2, 3),
                       strides=a.strides+a.strides[1:])
    ret[0, 1:-1] = win_a.min(axis=2).min(axis=0)
    win_a = as_strided(a[-2:, :], shape=(2, cols-2, 3),
                       strides=a.strides+a.strides[1:])
    ret[-1, 1:-1] = win_a.min(axis=2).min(axis=0)
    win_a = as_strided(a[:, :2], shape=(rows-2, 2, 3),
                       strides=a.strides+a.strides[:1])
    ret[1:-1, 0] = win_a.min(axis=2).min(axis=1)
    win_a = as_strided(a[:, -2:], shape=(rows-2, 2, 3),
                       strides=a.strides+a.strides[:1])
    ret[1:-1, -1] = win_a.min(axis=2).min(axis=1)

    # Fill the corners
    ret[0, 0] = a[:2, :2].min()
    ret[0, -1] = a[:2, -2:].min()
    ret[-1, -1] = a[-2:, -2:].min()
    ret[-1, 0] = a[-2:, :2].min()

    return ret
Run Code Online (Sandbox Code Playgroud)

您现在可以执行以下操作:

>>> a = np.random.randint(10, size=(5, 5))
>>> a
array([[0, 3, 1, 8, 9],
       [7, 2, 7, 5, 7],
       [4, 2, 6, 1, 9],
       [2, 8, 1, 2, 3],
       [7, 7, 6, 8, 0]])
>>> neighbor_min(a)
array([[0, 0, 1, 1, 5],
       [0, 0, 1, 1, 1],
       [2, 1, 1, 1, 1],
       [2, 1, 1, 0, 0],
       [2, 1, 1, 0, 0]])
Run Code Online (Sandbox Code Playgroud)

您的原始问题可以解决为:

def bd_from_ac(a, c):
    return a*neighbor_min(a), neighbor_min(c)
Run Code Online (Sandbox Code Playgroud)

作为性能基准:

In [2]: m, n = 1000, 1000

In [3]: a = np.random.rand(m, n)

In [4]: c = np.random.rand(m, n)

In [5]: %timeit bd_from_ac(a, c)
1 loops, best of 3: 123 ms per loop
Run Code Online (Sandbox Code Playgroud)

  • @diegogb:这与scipy.ndimage.filters.minimum_filter有什么不同?此外,我可能误解了,但没有diegogb想要使用`a`中的邻居索引从`c`获取值来产生`b`?(而不是找到`c`的最小邻居?) (2认同)