Ale*_*ood 5 java multithreading
我编写了一个多线程矩阵乘法.我相信我的方法是正确的,但我不是百分百肯定.关于线程,我不明白为什么我不能只运行一个(new MatrixThread(...)).start()而不是使用ExecutorService.
此外,当我对多线程方法与经典方法进行基准测试时,经典方法要快得多......
我究竟做错了什么?
矩阵类:
import java.util.*;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
class Matrix
{
private int dimension;
private int[][] template;
public Matrix(int dimension)
{
this.template = new int[dimension][dimension];
this.dimension = template.length;
}
public Matrix(int[][] array)
{
this.dimension = array.length;
this.template = array;
}
public int getMatrixDimension() { return this.dimension; }
public int[][] getArray() { return this.template; }
public void fillMatrix()
{
Random randomNumber = new Random();
for(int i = 0; i < dimension; i++)
{
for(int j = 0; j < dimension; j++)
{
template[i][j] = randomNumber.nextInt(10) + 1;
}
}
}
@Override
public String toString()
{
String retString = "";
for(int i = 0; i < this.getMatrixDimension(); i++)
{
for(int j = 0; j < this.getMatrixDimension(); j++)
{
retString += " " + this.getArray()[i][j];
}
retString += "\n";
}
return retString;
}
public static Matrix classicalMultiplication(Matrix a, Matrix b)
{
int[][] result = new int[a.dimension][b.dimension];
for(int i = 0; i < a.dimension; i++)
{
for(int j = 0; j < b.dimension; j++)
{
for(int k = 0; k < b.dimension; k++)
{
result[i][j] += a.template[i][k] * b.template[k][j];
}
}
}
return new Matrix(result);
}
public Matrix multiply(Matrix multiplier) throws InterruptedException
{
Matrix result = new Matrix(dimension);
ExecutorService es = Executors.newFixedThreadPool(dimension*dimension);
for(int currRow = 0; currRow < multiplier.dimension; currRow++)
{
for(int currCol = 0; currCol < multiplier.dimension; currCol++)
{
//(new MatrixThread(this, multiplier, currRow, currCol, result)).start();
es.execute(new MatrixThread(this, multiplier, currRow, currCol, result));
}
}
es.shutdown();
es.awaitTermination(2, TimeUnit.DAYS);
return result;
}
private class MatrixThread extends Thread
{
private Matrix a, b, result;
private int row, col;
private MatrixThread(Matrix a, Matrix b, int row, int col, Matrix result)
{
this.a = a;
this.b = b;
this.row = row;
this.col = col;
this.result = result;
}
@Override
public void run()
{
int cellResult = 0;
for (int i = 0; i < a.getMatrixDimension(); i++)
cellResult += a.template[row][i] * b.template[i][col];
result.template[row][col] = cellResult;
}
}
}
Run Code Online (Sandbox Code Playgroud)
主要课程:
import java.util.Scanner;
public class MatrixDriver
{
private static final Scanner kb = new Scanner(System.in);
public static void main(String[] args) throws InterruptedException
{
Matrix first, second;
long timeLastChanged,timeNow;
double elapsedTime;
System.out.print("Enter value of n (must be a power of 2):");
int n = kb.nextInt();
first = new Matrix(n);
first.fillMatrix();
second = new Matrix(n);
second.fillMatrix();
timeLastChanged = System.currentTimeMillis();
//System.out.println("Product of the two using threads:\n" +
first.multiply(second);
timeNow = System.currentTimeMillis();
elapsedTime = (timeNow - timeLastChanged)/1000.0;
System.out.println("Threaded took "+elapsedTime+" seconds");
timeLastChanged = System.currentTimeMillis();
//System.out.println("Product of the two using classical:\n" +
Matrix.classicalMultiplication(first,second);
timeNow = System.currentTimeMillis();
elapsedTime = (timeNow - timeLastChanged)/1000.0;
System.out.println("Classical took "+elapsedTime+" seconds");
}
}
Run Code Online (Sandbox Code Playgroud)
PS如果需要进一步澄清,请告诉我.
即使使用ExecutorService,创建线程也会涉及大量开销.我怀疑为什么你的多线程方法是如此缓慢的原因是你花了99%创建一个新的线程,只有1%或更少,做实际的数学.
通常,要解决此问题,您需要将一大堆操作一起批处理并在单个线程上运行它们.在这种情况下,我不是100%如何做到这一点,但我建议将矩阵分成更小的块(比如10个更小的矩阵)并在线程上运行,而不是在自己的线程中运行每个单元.
你创造了很多线程.创建线程不仅昂贵,而且对于CPU绑定应用程序,您不需要比可用处理器更多的线程(如果这样做,您必须花费线程之间的处理能力切换,这也可能导致缓存错过了非常昂贵的).
发送线程也没必要execute; 它所需要的只是一个Runnable.通过应用这些更改,您将获得巨大的性能提升:
创建ExecutorService一个静态成员,为当前处理器调整大小,然后发送它,ThreadFactory以便在main完成后不保持程序运行.(将它作为参数发送到方法而不是将其保持为静态字段可能在架构上更清晰;我将其留作读者的练习.☺)
private static final ExecutorService workerPool =
Executors.newFixedThreadPool(Runtime.getRuntime().availableProcessors(), new ThreadFactory() {
public Thread newThread(Runnable r) {
Thread t = new Thread(r);
t.setDaemon(true);
return t;
}
});
Run Code Online (Sandbox Code Playgroud)制作 MatrixThread工具Runnable而不是继承Thread.线程创建起来很昂贵; POJO非常便宜.您还可以使static实例更小(因为非静态类获得对封闭对象的隐式引用).
private static class MatrixThread implements Runnable
Run Code Online (Sandbox Code Playgroud)从更改(1)开始,您无法再awaitTermination确保完成所有任务(作为此工作池).相反,使用submit返回a 的方法Future<?>.收集列表中的所有未来对象,当您提交了所有任务时,迭代列表并调用get每个对象.
你的multiply方法现在应该是这样的:
public Matrix multiply(Matrix multiplier) throws InterruptedException {
Matrix result = new Matrix(dimension);
List<Future<?>> futures = new ArrayList<Future<?>>();
for(int currRow = 0; currRow < multiplier.dimension; currRow++) {
for(int currCol = 0; currCol < multiplier.dimension; currCol++) {
Runnable worker = new MatrixThread(this, multiplier, currRow, currCol, result);
futures.add(workerPool.submit(worker));
}
}
for (Future<?> f : futures) {
try {
f.get();
} catch (ExecutionException e){
throw new RuntimeException(e); // shouldn't happen, but might do
}
}
return result;
}
Run Code Online (Sandbox Code Playgroud)
它会比单线程版本更快吗?好吧,在我可以说是糟糕的盒子上,多线程版本的值n<1024.
不过,这只是表面上的问题.在真正的问题是,你创建一个很多的MatrixThread情况下-你的内存消耗O(n²),这是一个非常不好的迹象.将内部for循环移动到MatrixThread.run将通过craploads因子提高性能(理想情况下,您不会创建比工作线程更多的任务).
编辑:由于我有更多紧迫的事情要做,我无法抗拒进一步优化.我想出了这个(......极其难看的代码片段),"只"创造了O(n)工作:
public Matrix multiply(Matrix multiplier) throws InterruptedException {
Matrix result = new Matrix(dimension);
List<Future<?>> futures = new ArrayList<Future<?>>();
for(int currRow = 0; currRow < multiplier.dimension; currRow++) {
Runnable worker = new MatrixThread2(this, multiplier, currRow, result);
futures.add(workerPool.submit(worker));
}
for (Future<?> f : futures) {
try {
f.get();
} catch (ExecutionException e){
throw new RuntimeException(e); // shouldn't happen, but might do
}
}
return result;
}
private static class MatrixThread2 implements Runnable
{
private Matrix self, mul, result;
private int row, col;
private MatrixThread2(Matrix a, Matrix b, int row, Matrix result)
{
this.self = a;
this.mul = b;
this.row = row;
this.result = result;
}
@Override
public void run()
{
for(int col = 0; col < mul.dimension; col++) {
int cellResult = 0;
for (int i = 0; i < self.getMatrixDimension(); i++)
cellResult += self.template[row][i] * mul.template[i][col];
result.template[row][col] = cellResult;
}
}
}
Run Code Online (Sandbox Code Playgroud)
它仍然不是很好,但基本上多线程版本可以计算你耐心等待的任何东西,并且它比单线程版本更快.