重塑宽格式,多列长格式

Sam*_*Sam 15 r reshape melt reshape2

我想重塑一个宽格式数据集,该数据集具有多个测试,这些测试在3个时间点进行测量:

   ID   Test Year   Fall Spring Winter
    1   1   2008    15      16      19
    1   1   2009    12      13      27
    1   2   2008    22      22      24
    1   2   2009    10      14      20
    2   1   2008    12      13      25
    2   1   2009    16      14      21
    2   2   2008    13      11      29
    2   2   2009    23      20      26
    3   1   2008    11      12      22
    3   1   2009    13      11      27
    3   2   2008    17      12      23
    3   2   2009    14      9       31
Run Code Online (Sandbox Code Playgroud)

进入一个按列分隔测试的数据集,但将测量时间转换为长格式,对于每个新列,如下所示:

    ID  Year    Time        Test1 Test2
    1   2008    Fall        15      22
    1   2008    Spring      16      22
    1   2008    Winter      19      24
    1   2009    Fall        12      10
    1   2009    Spring      13      14
    1   2009    Winter      27      20
    2   2008    Fall        12      13
    2   2008    Spring      13      11
    2   2008    Winter      25      29
    2   2009    Fall        16      23
    2   2009    Spring      14      20
    2   2009    Winter      21      26
    3   2008    Fall        11      17
    3   2008    Spring      12      12
    3   2008    Winter      22      23
    3   2009    Fall        13      14
    3   2009    Spring      11      9
    3   2009    Winter      27      31
Run Code Online (Sandbox Code Playgroud)

我没有成功尝试使用重塑和融化.现有职位解决了转换为单列结果的问题.

Aru*_*run 18

使用reshape2:

# Thanks to Ista for helping with direct naming using "variable.name"
df.m <- melt(df, id.var = c("ID", "Test", "Year"), variable.name = "Time")
df.m <- transform(df.m, Test = paste0("Test", Test))
dcast(df.m, ID + Year + Time ~ Test, value.var = "value")
Run Code Online (Sandbox Code Playgroud)

更新:使用版本> = 1.9.0的data.table melt/cast:

data.table从版本1.9.0导入reshape2包和实现快速meltdcastC中的方法data.tables.较大数据的速度比较如下所示.

有关新闻的更多信息,请转到此处.

require(data.table) ## ver. >=1.9.0
require(reshape2)

dt <- as.data.table(df, key=c("ID", "Test", "Year"))
dt.m <- melt(dt, id.var = c("ID", "Test", "Year"), variable.name = "Time")
dt.m[, Test := paste0("Test", Test)]
dcast.data.table(dt.m, ID + Year + Time ~ Test, value.var = "value")
Run Code Online (Sandbox Code Playgroud)

目前,你必须dcast.data.table明确地写,因为它还不是S3泛型reshape2.


对更大数据进行基准测试:

# generate data:
set.seed(45L)
DT <- data.table(ID = sample(1e2, 1e7, TRUE), 
        Test = sample(1e3, 1e7, TRUE), 
        Year = sample(2008:2014, 1e7,TRUE), 
        Fall = sample(50, 1e7, TRUE), 
        Spring = sample(50, 1e7,TRUE), 
        Winter = sample(50, 1e7, TRUE))
DF <- as.data.frame(DT)
Run Code Online (Sandbox Code Playgroud)

重塑2时间:

reshape2_melt <- function(df) {
    df.m <- melt(df, id.var = c("ID", "Test", "Year"), variable.name = "Time")
}
# min. of three consecutive runs
system.time(df.m <- reshape2_melt(DF))
#   user  system elapsed 
# 43.319   4.909  48.932 

df.m <- transform(df.m, Test = paste0("Test", Test))

reshape2_cast <- function(df) {
    dcast(df.m, ID + Year + Time ~ Test, value.var = "value")
}
# min. of three consecutive runs
system.time(reshape2_cast(df.m))
#   user  system elapsed 
# 57.728   9.712  69.573 
Run Code Online (Sandbox Code Playgroud)

data.table计时:

DT_melt <- function(dt) {
    dt.m <- melt(dt, id.var = c("ID", "Test", "Year"), variable.name = "Time")
}
# min. of three consecutive runs
system.time(dt.m <- reshape2_melt(DT))
#   user  system elapsed 
#  0.276   0.001   0.279 

dt.m[, Test := paste0("Test", Test)]

DT_cast <- function(dt) {
    dcast.data.table(dt.m, ID + Year + Time ~ Test, value.var = "value")
}
# min. of three consecutive runs
system.time(DT_cast(dt.m))
#   user  system elapsed 
# 12.732   0.825  14.006 
Run Code Online (Sandbox Code Playgroud)

melt.data.table〜175x的速度reshape2:::meltdcast.data.table〜5倍reshape2:::dcast.

  • 哇,...不知道你可以用data.table. (4认同)