找到字符串的第一个非重复字符的最佳空间和时间效率解决方案是aabccbdcbe什么?
这里的答案是d.因此,让我感到震惊的是,它可以通过两种方式完成:
Aar*_*our 17
这是一个非常简单的O(n)解决方案:
def fn(s):
order = []
counts = {}
for x in s:
if x in counts:
counts[x] += 1
else:
counts[x] = 1
order.append(x)
for x in order:
if counts[x] == 1:
return x
return None
Run Code Online (Sandbox Code Playgroud)
我们遍历字符串一次.当我们遇到一个新角色时,我们将其存储counts为值1,并将其附加到order.当我们遇到一个我们以前见过的角色时,我们会增加它的价值counts.最后,我们循环order直到找到值为1in 的字符counts并返回它.
我认为从字符串中删除重复字符可能会显着减少操作次数.例如:
s = "aabccbdcbe"
while s != "":
slen0 = len(s)
ch = s[0]
s = s.replace(ch, "")
slen1 = len(s)
if slen1 == slen0-1:
print ch
break;
else:
print "No answer"
Run Code Online (Sandbox Code Playgroud)
如果字符仅出现一次,则列表理解将按照它们出现的顺序为您提供:
In [61]: s = 'aabccbdcbe'
In [62]: [a for a in s if s.count(a) == 1]
Out[62]: ['d', 'e']
Run Code Online (Sandbox Code Playgroud)
然后只返回第一个条目:
In [63]: [a for a in s if s.count(a) == 1][0]
Out[63]: 'd'
Run Code Online (Sandbox Code Playgroud)
如果您只需要第一个条目,那么生成器也可以正常工作:
In [69]: (a for a in s if s.count(a) == 1).next()
Out[69]: 'd'
Run Code Online (Sandbox Code Playgroud)
搜索速度取决于几个因素:
.
在下面的代码,我首先定义了一个字符串s
的帮助下random.choice(),并命名一批一次性出现的人物unik ,
两个字符串s1和s2我连击:s1 + s2
其中:
s1是一个长度的字符串,nwo其中没有任何一次性出现的字符s2是一个长度的字符串,nwi其中有一次出现的字符.
#### creation of s from s1 and s2 #########
from random import choice
def without(u,n):
letters = list('abcdefghijklmnopqrstuvwxyz')
for i in xrange(n):
c = choice(letters)
if c not in unik:
yield c
def with_un(u,n):
letters = list('abcdefghijklmnopqrstuvwxyz')
ecr = []
for i in xrange(n):
c = choice(letters)
#ecr.append('%d %s len(letters) == %d' % (i,c,len(letters)))
yield c
if c in unik:
letters.remove(c)
#print '\n'.join(ecr)
unik = 'ekprw'
nwo,nwi = 0,500
s1 = ''.join(c for c in without(unik,nwo))
s2 = ''.join(c for c in with_un(unik,nwi))
s = s1 + s2
if s1:
print '%-27ss2 : %d chars' % ('s1 : %d chars' % len(s1),len(s2))
for el in 'ekprw':
print ('s1.count(%s) == %-12ds2.count(%s) == %d'
% (el,s1.count(el),el,s2.count(el)))
others = [c for c in 'abcdefghijklmnopqrstuvwxyz' if c not in unik]
print 's1.count(others)>1 %s' % all(s1.count(c)>1 for c in others)
else:
print "s1 == '' len(s2) == %d" % len(s2)
for el in 'ekprw':
print (' - s2.count(%s) == %d'
% (el,s2.count(el)))
print 'len of s == %d\n' % len(s)
Run Code Online (Sandbox Code Playgroud)
然后是基准测试。
改变数字nwo,nwi我们看到对速度的影响:
### benchmark of three solutions #################
from time import clock
# Janne Karila
from collections import Counter, OrderedDict
class OrderedCounter(Counter, OrderedDict):
pass
te = clock()
c = OrderedCounter(s)
rjk = (item for item, count in c.iteritems() if count == 1).next()
tf = clock()-te
print 'Janne Karila %.5f found: %s' % (tf,rjk)
# eyquem
te = clock()
candidates = set(s)
li = []
for x in s:
if x in candidates:
li.append(x)
candidates.remove(x)
elif x in li:
li.remove(x)
rey = li[0]
tf = clock()-te
print 'eyquem %.5f found: %s' % (tf,rey)
# TyrantWave
te = clock()
rty = (a for a in s if s.count(a) == 1).next()
tf = clock()-te
print 'TyrantWave %.5f found: %s' % (tf,rty)
Run Code Online (Sandbox Code Playgroud)
.
一些结果
对于s1空长度,nwo = 0 和 nwi = 50:
s1 == '' len(s2) == 50
- s2.count(e) == 1
- s2.count(k) == 1
- s2.count(p) == 1
- s2.count(r) == 1
- s2.count(w) == 1
len of s == 50
Janne Karila 0.00077 found: e
eyquem 0.00013 found: e
TyrantWave 0.00005 found: e
Run Code Online (Sandbox Code Playgroud)
TyrantWave 的解决方案更快,因为在字符串的第一个位置快速找到第一个出现的字符
.
使用 nwo = 300 和 nwi = 50
(以下为 401 个字符,s1因为在 的构造过程中没有保留一次性出现的字符s1,请参阅无 () 函数)
s1 : 245 chars s2 : 50 chars
s1.count(e) == 0 s2.count(e) == 1
s1.count(k) == 0 s2.count(k) == 1
s1.count(p) == 0 s2.count(p) == 1
s1.count(r) == 0 s2.count(r) == 1
s1.count(w) == 0 s2.count(w) == 1
s1.count(others)>1 True
len of s == 295
Janne Karila 0.00167 found: e
eyquem 0.00030 found: e
TyrantWave 0.00042 found: e
Run Code Online (Sandbox Code Playgroud)
这次 TyrantWave 的解决方案比我的要长,因为它必须计算第一部分中所有字符的出现次数,s也就是说s1其中没有一次性出现的字符(它们在第二部分中s2)
但是,为了使用我的解决方案获得更短的时间,nwo需要明显大于nwi
.
nwo = 300 和 nwi = 5000
s1 : 240 chars s2 : 5000 chars
s1.count(e) == 0 s2.count(e) == 1
s1.count(k) == 0 s2.count(k) == 1
s1.count(p) == 0 s2.count(p) == 1
s1.count(r) == 0 s2.count(r) == 1
s1.count(w) == 0 s2.count(w) == 1
s1.count(others)>1 True
len of s == 5240
Janne Karila 0.01510 found: p
eyquem 0.00534 found: p
TyrantWave 0.00294 found: p
Run Code Online (Sandbox Code Playgroud)
如果s2提高了 的长度,那么 TyrantWave 的解决方案再次更好。
.
总结你想要的
.
罗马的好主意!
我在我的基准测试中添加了 Roman 的解决方案,它赢了!
我还做了一些微小的修改来改进他的解决方案。
# Roman Fursenko
srf = s[:]
te = clock()
while srf != "":
slen0 = len(srf)
ch = srf[0]
srf = srf.replace(ch, "")
slen1 = len(srf)
if slen1 == slen0-1:
rrf = ch
break
else:
rrf = "No answer"
tf = clock()-te
print 'Roman Fursenko %.6f found: %s' % (tf,rrf)
# Roman Fursenko improved
srf = s[:]
te = clock()
while not(srf is ""):
slen0 = len(srf)
srf = srf.replace(srf[0], "")
if len(srf) == slen0-1:
rrf = ch
break
else:
rrf = "No answer"
tf = clock()-te
print 'Roman improved %.6f found: %s' % (tf,rrf)
print '\nindex of %s in the string : %d' % (rty,s.index(rrf))
Run Code Online (Sandbox Code Playgroud)
.
结果是:
.
s1 == '' len(s2) == 50
- s2.count(e) == 1
- s2.count(k) == 1
- s2.count(p) == 1
- s2.count(r) == 1
- s2.count(w) == 1
len of s == 50
Janne Karila 0.0032538 found: r
eyquem 0.0001249 found: r
TyrantWave 0.0000534 found: r
Roman Fursenko 0.0000299 found: r
Roman improved 0.0000263 found: r
index of r in the string : 1
Run Code Online (Sandbox Code Playgroud)
s1 == '' len(s2) == 50
- s2.count(e) == 1
- s2.count(k) == 0
- s2.count(p) == 1
- s2.count(r) == 1
- s2.count(w) == 1
len of s == 50
Janne Karila 0.0008183 found: a
eyquem 0.0001285 found: a
TyrantWave 0.0000550 found: a
Roman Fursenko 0.0000433 found: a
Roman improved 0.0000391 found: a
index of a in the string : 4
Run Code Online (Sandbox Code Playgroud)
>
s1 : 240 chars s2 : 50 chars
s1.count(e) == 0 s2.count(e) == 1
s1.count(k) == 0 s2.count(k) == 0
s1.count(p) == 0 s2.count(p) == 1
s1.count(r) == 0 s2.count(r) == 1
s1.count(w) == 0 s2.count(w) == 1
s1.count(others)>1 True
len of s == 290
Janne Karila 0.0016390 found: e
eyquem 0.0002956 found: e
TyrantWave 0.0004112 found: e
Roman Fursenko 0.0001428 found: e
Roman improved 0.0001277 found: e
index of e in the string : 242
Run Code Online (Sandbox Code Playgroud)
s1 : 241 chars s2 : 5000 chars
s1.count(e) == 0 s2.count(e) == 1
s1.count(k) == 0 s2.count(k) == 1
s1.count(p) == 0 s2.count(p) == 1
s1.count(r) == 0 s2.count(r) == 1
s1.count(w) == 0 s2.count(w) == 1
s1.count(others)>1 True
len of s == 5241
Janne Karila 0.0148231 found: r
eyquem 0.0053283 found: r
TyrantWave 0.0030166 found: r
Roman Fursenko 0.0007414 found: r
Roman improved 0.0007230 found: r
index of r in the string : 250
Run Code Online (Sandbox Code Playgroud)
由于 Roman 的代码,我学到了一些东西:
s.replace()创建一个新字符串,因此我认为这是一种缓慢的方法。
但是,我不知道出于什么原因,这是一种非常快速的方法。
.
Oin 的解决方案是最糟糕的:
# Oin
from operator import itemgetter
seen = set()
only_appear_once = dict()
te = clock()
for i, x in enumerate(s):
if x in seen and x in only_appear_once:
only_appear_once.pop(x)
else:
seen.add(x)
only_appear_once[x] = i
fco = min(only_appear_once.items(),key=itemgetter(1))[0]
tf = clock()-te
print 'Oin %.7f found: %s' % (tf,fco)
Run Code Online (Sandbox Code Playgroud)
结果
s1 == '' len(s2) == 50
Oin 0.0007124 found: e
Janne Karila 0.0008057 found: e
eyquem 0.0001252 found: e
TyrantWave 0.0000712 found: e
Roman Fursenko 0.0000335 found: e
Roman improved 0.0000335 found: e
index of e in the string : 2
s1 : 237 chars s2 : 50 chars
Oin 0.0029783 found: k
Janne Karila 0.0014714 found: k
eyquem 0.0002889 found: k
TyrantWave 0.0005598 found: k
Roman Fursenko 0.0001458 found: k
Roman improved 0.0001372 found: k
index of k in the string : 246
s1 : 236 chars s2 : 5000 chars
Oin 0.0801739 found: e
Janne Karila 0.0155715 found: e
eyquem 0.0044623 found: e
TyrantWave 0.0027548 found: e
Roman Fursenko 0.0007255 found: e
Roman improved 0.0007199 found: e
index of e in the string : 244
Run Code Online (Sandbox Code Playgroud)