可用于矩阵形式的微分运算符,在 Python 模块 Sympy 中

Sau*_*tro 4 python matrix sympy automatic-differentiation differentiation

我们需要微分算子的两个矩阵[B][C]如:

B = sympy.Matrix([[ D(x), D(y) ],
                  [ D(y), D(x) ]])

C = sympy.Matrix([[ D(x), D(y) ]])

ans = B * sympy.Matrix([[x*y**2],
                        [x**2*y]])
print ans
[x**2 + y**2]
[      4*x*y]

ans2 = ans * C
print ans2
[2*x, 2*y]
[4*y, 4*x]
Run Code Online (Sandbox Code Playgroud)

这也可以用于计算矢量场的卷曲,例如:

culr  = sympy.Matrix([[ D(x), D(y), D(z) ]])
field = sympy.Matrix([[ x**2*y, x*y*z, -x**2*y**2 ]])
Run Code Online (Sandbox Code Playgroud)

要使用 Sympy 解决这个问题,必须创建以下 Python 类:

import sympy

class D( sympy.Derivative ):
    def __init__( self, var ):
        super( D, self ).__init__()
        self.var = var

    def __mul__(self, other):
        return sympy.diff( other, self.var )
Run Code Online (Sandbox Code Playgroud)

当微分运算符的矩阵在左边相乘时,这个类单独解决。这里diff只在要微分的函数已知时才执行。

为了解决当微分运算符矩阵在右边相乘时,__mul__核心类中的方法Expr必须按以下方式更改:

class Expr(Basic, EvalfMixin):
    # ...
    def __mul__(self, other):
        import sympy
        if other.__class__.__name__ == 'D':
            return sympy.diff( self, other.var )
        else:
            return Mul(self, other)
    #...
Run Code Online (Sandbox Code Playgroud)

它工作得很好,但 Sympy 中应该有一个更好的本地解决方案来处理这个问题。有人知道它可能是什么吗?

Sau*_*tro 5

此解决方案应用了其他答案和此处的提示。该D操作员可以定义为如下:

  • 仅在从左侧乘以时才考虑,因此D(t)*2*t**3 = 6*t**22*t**3*D(t)什么也不做
  • 使用的所有表达式和符号D必须具有is_commutative = False
  • 在给定表达式的上下文中使用 evaluateExpr()
    • 它沿着表达式从右到左找到D运算符并将mydiff()*应用到相应的右侧部分

*:mydiff用于代替diff允许D创建更高的顺序,例如mydiff(D(t), t) = D(t,t)

diff内部__mul__()D保持,仅供参考,因为在当前的解决方案的evaluateExpr()实际执行分化的工作。创建了一个 python mudule 并保存为d.py.

import sympy
from sympy.core.decorators import call_highest_priority
from sympy import Expr, Matrix, Mul, Add, diff
from sympy.core.numbers import Zero

class D(Expr):
    _op_priority = 11.
    is_commutative = False
    def __init__(self, *variables, **assumptions):
        super(D, self).__init__()
        self.evaluate = False
        self.variables = variables

    def __repr__(self):
        return 'D%s' % str(self.variables)

    def __str__(self):
        return self.__repr__()

    @call_highest_priority('__mul__')
    def __rmul__(self, other):
        return Mul(other, self)

    @call_highest_priority('__rmul__')
    def __mul__(self, other):
        if isinstance(other, D):
            variables = self.variables + other.variables
            return D(*variables)
        if isinstance(other, Matrix):
            other_copy = other.copy()
            for i, elem in enumerate(other):
                other_copy[i] = self * elem
            return other_copy

        if self.evaluate:
            return diff(other, *self.variables)
        else:
            return Mul(self, other)

    def __pow__(self, other):
        variables = self.variables
        for i in range(other-1):
            variables += self.variables
        return D(*variables)

def mydiff(expr, *variables):
    if isinstance(expr, D):
        expr.variables += variables
        return D(*expr.variables)
    if isinstance(expr, Matrix):
        expr_copy = expr.copy()
        for i, elem in enumerate(expr):
            expr_copy[i] = diff(elem, *variables)
        return expr_copy
    return diff(expr, *variables)

def evaluateMul(expr):
    end = 0
    if expr.args:
        if isinstance(expr.args[-1], D):
            if len(expr.args[:-1])==1:
                cte = expr.args[0]
                return Zero()
            end = -1
    for i in range(len(expr.args)-1+end, -1, -1):
        arg = expr.args[i]
        if isinstance(arg, Add):
            arg = evaluateAdd(arg)
        if isinstance(arg, Mul):
            arg = evaluateMul(arg)
        if isinstance(arg, D):
            left = Mul(*expr.args[:i])
            right = Mul(*expr.args[i+1:])
            right = mydiff(right, *arg.variables)
            ans = left * right
            return evaluateMul(ans)
    return expr

def evaluateAdd(expr):
    newargs = []
    for arg in expr.args:
        if isinstance(arg, Mul):
            arg = evaluateMul(arg)
        if isinstance(arg, Add):
            arg = evaluateAdd(arg)
        if isinstance(arg, D):
            arg = Zero()
        newargs.append(arg)
    return Add(*newargs)

#courtesy: /sf/answers/3380403491/
def disableNonCommutivity(expr):
    replacements = {s: sympy.Dummy(s.name) for s in expr.free_symbols}
    return expr.xreplace(replacements)

def evaluateExpr(expr):
    if isinstance(expr, Matrix):
        for i, elem in enumerate(expr):
            elem = elem.expand()
            expr[i] = evaluateExpr(elem)
        return disableNonCommutivity(expr)
    expr = expr.expand()
    if isinstance(expr, Mul):
        expr = evaluateMul(expr)
    elif isinstance(expr, Add):
        expr = evaluateAdd(expr)
    elif isinstance(expr, D):
        expr = Zero()
    return disableNonCommutivity(expr)
Run Code Online (Sandbox Code Playgroud)

示例 1:矢量场的卷曲。请注意,定义变量很重要,commutative=False因为它们的顺序Mul().args会影响结果,请参阅其他问题

from d import D, evaluateExpr
from sympy import Matrix
sympy.var('x', commutative=False)
sympy.var('y', commutative=False)
sympy.var('z', commutative=False)
curl  = Matrix( [[ D(x), D(y), D(z) ]] )
field = Matrix( [[ x**2*y, x*y*z, -x**2*y**2 ]] )       
evaluateExpr( curl.cross( field ) )
# [-x*y - 2*x**2*y, 2*x*y**2, -x**2 + y*z]
Run Code Online (Sandbox Code Playgroud)

示例 2:结构分析中使用的典型 Ritz 近似。

from d import D, evaluateExpr
from sympy import sin, cos, Matrix
sin.is_commutative = False
cos.is_commutative = False
g1 = []
g2 = []
g3 = []
sympy.var('x', commutative=False)
sympy.var('t', commutative=False)
sympy.var('r', commutative=False)
sympy.var('A', commutative=False)
m=5
n=5
for j in xrange(1,n+1):
    for i in xrange(1,m+1):
        g1 += [sin(i*x)*sin(j*t),                 0,                 0]
        g2 += [                0, cos(i*x)*sin(j*t),                 0]
        g3 += [                0,                 0, sin(i*x)*cos(j*t)]
g = Matrix( [g1, g2, g3] )

B = Matrix(\
    [[     D(x),        0,        0],
     [    1/r*A,        0,        0],
     [ 1/r*D(t),        0,        0],
     [        0,     D(x),        0],
     [        0,    1/r*A, 1/r*D(t)],
     [        0, 1/r*D(t), D(x)-1/x],
     [        0,        0,        1],
     [        0,        1,        0]])

ans = evaluateExpr(B*g)
Run Code Online (Sandbox Code Playgroud)

print_to_file()已经创建了一个函数来快速检查大表达式。

import sympy
import subprocess
def print_to_file( guy, append=False ):
    flag = 'w'
    if append: flag = 'a'
    outfile = open(r'print.txt', flag)
    outfile.write('\n')
    outfile.write( sympy.pretty(guy, wrap_line=False) )
    outfile.write('\n')
    outfile.close()
    subprocess.Popen( [r'notepad.exe', r'print.txt'] )

print_to_file( B*g )
print_to_file( ans, append=True )
Run Code Online (Sandbox Code Playgroud)