Mar*_*s W 13 python row sequence dataframe pandas
我从.csv文件读入以下数据帧,其中"Date"列是索引.日期在行中,列显示当天的小时值.
> Date h1 h2 h3 h4 ... h24
> 14.03.2013 60 50 52 49 ... 73
Run Code Online (Sandbox Code Playgroud)
我想像这样安排它,这样就有一个索引列带有日期/时间,一列带有序列中的值
>Date/Time Value
>14.03.2013 00:00:00 60
>14.03.2013 01:00:00 50
>14.03.2013 02:00:00 52
>14.03.2013 03:00:00 49
>.
>.
>.
>14.03.2013 23:00:00 73
Run Code Online (Sandbox Code Playgroud)
我通过使用两个循环来遍历数据帧来尝试它.在熊猫中有更简单的方法吗?
DSM*_*DSM 15
我不是最好的约会操纵,但可能是这样的:
import pandas as pd
from datetime import timedelta
df = pd.read_csv("hourmelt.csv", sep=r"\s+")
df = pd.melt(df, id_vars=["Date"])
df = df.rename(columns={'variable': 'hour'})
df['hour'] = df['hour'].apply(lambda x: int(x.lstrip('h'))-1)
combined = df.apply(lambda x:
pd.to_datetime(x['Date'], dayfirst=True) +
timedelta(hours=int(x['hour'])), axis=1)
df['Date'] = combined
del df['hour']
df = df.sort("Date")
Run Code Online (Sandbox Code Playgroud)
一些解释如下.
从...开始
>>> import pandas as pd
>>> from datetime import datetime, timedelta
>>>
>>> df = pd.read_csv("hourmelt.csv", sep=r"\s+")
>>> df
Date h1 h2 h3 h4 h24
0 14.03.2013 60 50 52 49 73
1 14.04.2013 5 6 7 8 9
Run Code Online (Sandbox Code Playgroud)
我们可以使用pd.melt这个值将小时列放到一列中:
>>> df = pd.melt(df, id_vars=["Date"])
>>> df = df.rename(columns={'variable': 'hour'})
>>> df
Date hour value
0 14.03.2013 h1 60
1 14.04.2013 h1 5
2 14.03.2013 h2 50
3 14.04.2013 h2 6
4 14.03.2013 h3 52
5 14.04.2013 h3 7
6 14.03.2013 h4 49
7 14.04.2013 h4 8
8 14.03.2013 h24 73
9 14.04.2013 h24 9
Run Code Online (Sandbox Code Playgroud)
摆脱那些hs:
>>> df['hour'] = df['hour'].apply(lambda x: int(x.lstrip('h'))-1)
>>> df
Date hour value
0 14.03.2013 0 60
1 14.04.2013 0 5
2 14.03.2013 1 50
3 14.04.2013 1 6
4 14.03.2013 2 52
5 14.04.2013 2 7
6 14.03.2013 3 49
7 14.04.2013 3 8
8 14.03.2013 23 73
9 14.04.2013 23 9
Run Code Online (Sandbox Code Playgroud)
将这两列合并为一个日期:
>>> combined = df.apply(lambda x: pd.to_datetime(x['Date'], dayfirst=True) + timedelta(hours=int(x['hour'])), axis=1)
>>> combined
0 2013-03-14 00:00:00
1 2013-04-14 00:00:00
2 2013-03-14 01:00:00
3 2013-04-14 01:00:00
4 2013-03-14 02:00:00
5 2013-04-14 02:00:00
6 2013-03-14 03:00:00
7 2013-04-14 03:00:00
8 2013-03-14 23:00:00
9 2013-04-14 23:00:00
Run Code Online (Sandbox Code Playgroud)
重新组装和清理:
>>> df['Date'] = combined
>>> del df['hour']
>>> df = df.sort("Date")
>>> df
Date value
0 2013-03-14 00:00:00 60
2 2013-03-14 01:00:00 50
4 2013-03-14 02:00:00 52
6 2013-03-14 03:00:00 49
8 2013-03-14 23:00:00 73
1 2013-04-14 00:00:00 5
3 2013-04-14 01:00:00 6
5 2013-04-14 02:00:00 7
7 2013-04-14 03:00:00 8
9 2013-04-14 23:00:00 9
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
8091 次 |
| 最近记录: |