如何重新排列python pandas数据帧?

Mar*_*s W 13 python row sequence dataframe pandas

我从.csv文件读入以下数据帧,其中"Date"列是索引.日期在行中,列显示当天的小时值.

> Date           h1 h2  h3  h4 ... h24
> 14.03.2013    60  50  52  49 ... 73
Run Code Online (Sandbox Code Playgroud)

我想像这样安排它,这样就有一个索引列带有日期/时间,一列带有序列中的值

>Date/Time            Value
>14.03.2013 00:00:00  60
>14.03.2013 01:00:00  50
>14.03.2013 02:00:00  52
>14.03.2013 03:00:00  49
>.
>.
>.
>14.03.2013 23:00:00  73
Run Code Online (Sandbox Code Playgroud)

我通过使用两个循环来遍历数据帧来尝试它.在熊猫中有更简单的方法吗?

DSM*_*DSM 15

我不是最好的约会操纵,但可能是这样的:

import pandas as pd
from datetime import timedelta

df = pd.read_csv("hourmelt.csv", sep=r"\s+")

df = pd.melt(df, id_vars=["Date"])
df = df.rename(columns={'variable': 'hour'})
df['hour'] = df['hour'].apply(lambda x: int(x.lstrip('h'))-1)

combined = df.apply(lambda x: 
                    pd.to_datetime(x['Date'], dayfirst=True) + 
                    timedelta(hours=int(x['hour'])), axis=1)

df['Date'] = combined
del df['hour']

df = df.sort("Date")
Run Code Online (Sandbox Code Playgroud)

一些解释如下.

从...开始

>>> import pandas as pd
>>> from datetime import datetime, timedelta
>>> 
>>> df = pd.read_csv("hourmelt.csv", sep=r"\s+")
>>> df
         Date  h1  h2  h3  h4  h24
0  14.03.2013  60  50  52  49   73
1  14.04.2013   5   6   7   8    9
Run Code Online (Sandbox Code Playgroud)

我们可以使用pd.melt这个值将小时列放到一列中:

>>> df = pd.melt(df, id_vars=["Date"])
>>> df = df.rename(columns={'variable': 'hour'})
>>> df
         Date hour  value
0  14.03.2013   h1     60
1  14.04.2013   h1      5
2  14.03.2013   h2     50
3  14.04.2013   h2      6
4  14.03.2013   h3     52
5  14.04.2013   h3      7
6  14.03.2013   h4     49
7  14.04.2013   h4      8
8  14.03.2013  h24     73
9  14.04.2013  h24      9
Run Code Online (Sandbox Code Playgroud)

摆脱那些hs:

>>> df['hour'] = df['hour'].apply(lambda x: int(x.lstrip('h'))-1)
>>> df
         Date  hour  value
0  14.03.2013     0     60
1  14.04.2013     0      5
2  14.03.2013     1     50
3  14.04.2013     1      6
4  14.03.2013     2     52
5  14.04.2013     2      7
6  14.03.2013     3     49
7  14.04.2013     3      8
8  14.03.2013    23     73
9  14.04.2013    23      9
Run Code Online (Sandbox Code Playgroud)

将这两列合并为一个日期:

>>> combined = df.apply(lambda x: pd.to_datetime(x['Date'], dayfirst=True) + timedelta(hours=int(x['hour'])), axis=1)
>>> combined
0    2013-03-14 00:00:00
1    2013-04-14 00:00:00
2    2013-03-14 01:00:00
3    2013-04-14 01:00:00
4    2013-03-14 02:00:00
5    2013-04-14 02:00:00
6    2013-03-14 03:00:00
7    2013-04-14 03:00:00
8    2013-03-14 23:00:00
9    2013-04-14 23:00:00
Run Code Online (Sandbox Code Playgroud)

重新组装和清理:

>>> df['Date'] = combined
>>> del df['hour']
>>> df = df.sort("Date")
>>> df
                 Date  value
0 2013-03-14 00:00:00     60
2 2013-03-14 01:00:00     50
4 2013-03-14 02:00:00     52
6 2013-03-14 03:00:00     49
8 2013-03-14 23:00:00     73
1 2013-04-14 00:00:00      5
3 2013-04-14 01:00:00      6
5 2013-04-14 02:00:00      7
7 2013-04-14 03:00:00      8
9 2013-04-14 23:00:00      9
Run Code Online (Sandbox Code Playgroud)