如何将M x N灰度图像(或者换句话说矩阵或2-D阵列)转换为RGB热图,或者换句话说是M x N x 3阵列?
例:
[[0.9, 0.3], [0.2, 0.1]]
Run Code Online (Sandbox Code Playgroud)
应该成为
[[red, green-blue], [green-blue, blue]]
Run Code Online (Sandbox Code Playgroud)
红色是[1, 0, 0],蓝色是[0, 0, 1]等等.
rd1*_*d11 15
import matplotlib.pyplot as plt
img = [[0.9, 0.3], [0.2, 0.1]]
cmap = plt.get_cmap('jet')
rgba_img = cmap(img)
rgb_img = np.delete(rgba_img, 3, 2)
Run Code Online (Sandbox Code Playgroud)
cmap是matplotlib LinearSegmentedColormap类的一个实例,它是从Colormap类派生的.它的工作原理是因为__call__定义了函数Colormap.这是来自matplotlib的git repo的docstring供参考,因为它没有在API中描述.
def __call__(self, X, alpha=None, bytes=False):
"""
*X* is either a scalar or an array (of any dimension).
If scalar, a tuple of rgba values is returned, otherwise
an array with the new shape = oldshape+(4,). If the X-values
are integers, then they are used as indices into the array.
If they are floating point, then they must be in the
interval (0.0, 1.0).
Alpha must be a scalar between 0 and 1, or None.
If bytes is False, the rgba values will be floats on a
0-1 scale; if True, they will be uint8, 0-255.
"""
Run Code Online (Sandbox Code Playgroud)
更简单的选项是显示img,使用plt.imshow或plt.matshow,然后将结果复制或保存为RGB或RGBA图像.这对我的应用来说太慢了(在我的机器上慢了~30倍).
| 归档时间: |
|
| 查看次数: |
13081 次 |
| 最近记录: |