基于WinBugs/JAGS中的if - else条件选择不同的分布

use*_*239 7 if-statement model distribution jags winbugs

我正在尝试编写一个Winbugs/Jags模型来建模多粒度主题模型(完全是本文 - > http://www.ryanmcd.com/papers/mg_lda.pdf)

在这里,我想根据特定值选择不同的分布.对于Eg:我想做点什么

`if ( X[i] > 0.5 )
{
Z[i] ~ dcat(theta-gl[D[i], 1:K-gl])
W[i] ~ dcat(phi-gl[z[i], 1:V])
}
else 
{
Z[i] ~ dcat(theta-loc[D[i], 1:K-loc])
W[i] ~ dcat(phi-loc[z[i], 1:V])
}
`
Run Code Online (Sandbox Code Playgroud)

这可以在Winbugs/JAGS中完成吗?

TMS*_*TMS 8

Winbugs/JAGS不是一种过程语言,所以你不能使用这样的结构.使用step功能.从手册中引用:

步骤(e)...... 1如果e> = 0; 否则为0

所以你需要一个技巧来改变条件:

X[i] > 0.5   <=>     
X[i] - 0.5 > 0  <=> 
!(X[i] - 0.5 <= 0) <=>
!(-(X[i] - 0.5) >= 0) <=>
!(step(-(X[i] - 0.5)) == 1) <=>
step(-(X[i] - 0.5)) == 0
Run Code Online (Sandbox Code Playgroud)

然后用它来编制索引技巧:

# then branch
Z_branch[i, 1] ~ dcat(theta-gl[D[i], 1:K-gl])
W_branch[i, 1] ~ dcat(phi-gl[z[i], 1:V])

# else branch
Z_branch[i, 2] ~ dcat(theta-loc[D[i], 1:K-loc])
W_branch[i, 2] ~ dcat(phi-loc[z[i], 1:V])

# decision here
if_branch[i] <- 1 + step(-(X[i] - 0.5)) # 1 for "then" branch, 2 for "else" branch
Z[i] ~ Z_branch[i, if_branch[i]]
W[i] ~ W_branch[i, if_branch[i]]
Run Code Online (Sandbox Code Playgroud)