Mat*_*W-D 13 haskell qa mean quickcheck standard-deviation
我使用QuickCheck-2.5.1.1进行QA.我测试两个纯函数gold :: a -> Float
和f :: a -> Float
,其中a
实例随心所欲.
这gold
是参考计算,f
是我正在优化的变体.
到目前为止,我使用quickcheck的大多数测试都使用了类似的测试\a -> abs (gold a - f a) < 0.0001
.
但是,我想收集统计数据并检查阈值,因为知道平均误差和标准偏差对指导我的设计很有用.
有没有办法使用QuickCheck来收集这样的统计数据?
为了给出我正在寻找的那种东西的具体例子,假设我有以下两个函数来近似平方根:
-- Heron's method
heron :: Float -> Float
heron x = heron' 5 1
where
heron' n est
| n > 0 = heron' (n-1) $ (est + (x/est)) / 2
| otherwise = est
-- Fifth order Maclaurin series expansion
maclaurin :: Float -> Float
maclaurin x = 1 + (1/2) * (x - 1) - (1/8)*(x - 1)^2
+ (1/16)*(x - 1)^3 - (5/128)*(x - 1)^4
+ (7/256)*(x - 1)^5
Run Code Online (Sandbox Code Playgroud)
对此的测试可能是:
test = quickCheck
$ forAll (choose (1,2))
$ \x -> abs (heron x - maclaurin x) < 0.02
Run Code Online (Sandbox Code Playgroud)
因此,作为测试的副作用,我想知道的是统计数据abs (heron x - maclaurin x)
(例如均值和标准差).
感谢 Chris Kuklewicz 和 Ingo 的评论,我想出了以下内容来收集我在示例中想要的统计数据:
resultToWeightList :: Result -> [(Double,Int)]
resultToWeightList r = [ (read s, n) | (s,n) <- labels r]
weightListMuSigma :: [(Double,Int)] -> (Double,Double)
weightListMuSigma wlst = (mu,sigma)
where
(weightSum,weightSqrSum,entryCount) = foldl addEntry (0,0,0) wlst
addEntry (s,s2,c) (v,w) = (s + (v * w'), s2 + (v**2 * w'), c + w)
where w' = fromIntegral w
entryCount' = fromIntegral entryCount
mu = weightSum / entryCount'
var = weightSqrSum / entryCount' - mu**2
sigma = sqrt var
quietCheckResult :: Testable prop => prop -> IO Result
quietCheckResult p = quickCheckWithResult args p
where args = stdArgs { chatty = False }
test :: IO ()
test = do { r <- quietCheckResult $ forAll (choose (1,2)) test'
; let wlst = resultToWeightList r
; let (mu,sigma) = weightListMuSigma wlst
; putStrLn $ "Average: " ++ show mu
; putStrLn $ "Standard Deviation: " ++ show sigma
}
where
test' x = collect err (err < 0.1)
where err = abs $ heron x - maclaurin x
Run Code Online (Sandbox Code Playgroud)