mar*_*ako 7 python numpy cython
我通过添加一些类型并编译它来转换为cython python函数.我在python和cython函数的结果之间得到了很小的数值差异.经过一些工作,我发现差异来自使用unsigned int而不是int访问numpy数组.
我正在使用unsigned int索引来加速访问,具体如下:http://docs.cython.org/src/userguide/numpy_tutorial.html#tuning-indexing-further
无论如何,我认为使用无符号的整数是无害的.
看到这段代码:
cpdef function(np.ndarray[np.float32_t, ndim=2] response, max_loc):
cdef unsigned int x, y
x, y = int(max_loc[0]), int(max_loc[1])
x2, y2 = int(max_loc[0]), int(max_loc[1])
print response[y,x], type(response[y,x]), response.dtype
print response[y2,x2], type(response[y2,x2]), response.dtype
print 2*(response[y,x] - min(response[y,x-1], response[y,x+1]))
print 2*(response[y2,x2] - min(response[y2,x2-1], response[y2,x2+1]))
Run Code Online (Sandbox Code Playgroud)
打印:
0.959878861904 <type 'float'> float32
0.959879 <type 'numpy.float32'> float32
1.04306024313
1.04306030273
Run Code Online (Sandbox Code Playgroud)
为什么会这样?!!! 这是一个错误吗?
好的,这里要求的是一个SSCCE,它具有我在原始函数中使用的相同类型和值
cpdef function():
cdef unsigned int x, y
max_loc2 = np.asarray([ 15., 25.], dtype=float)
cdef np.ndarray[np.float32_t, ndim=2] response2 = np.zeros((49,49), dtype=np.float32)
x, y = int(max_loc2[0]), int(max_loc2[1])
x2, y2 = int(max_loc2[0]), int(max_loc2[1])
response2[y,x] = 0.959878861904
response2[y,x-1] = 0.438348740339
response2[y,x+1] = 0.753262758255
print response2[y,x], type(response2[y,x]), response2.dtype
print response2[y2,x2], type(response2[y2,x2]), response2.dtype
print 2*(response2[y,x] - min(response2[y,x-1], response2[y,x+1]))
print 2*(response2[y2,x2] - min(response2[y2,x2-1], response2[y2,x2+1]))
Run Code Online (Sandbox Code Playgroud)
版画
0.959878861904 <type 'float'> float32
0.959879 <type 'numpy.float32'> float32
1.04306024313
1.04306030273
Run Code Online (Sandbox Code Playgroud)
我使用python 2.7.3 cython 0.18和msvc9 express
我修改了问题中的示例,以便更简单地读取模块生成的C源代码.我只对查看创建Python float对象的逻辑而不是np.float32从response数组中获取对象感兴趣.
我正在使用pyximport编译扩展模块.它将生成的C文件保存在~/.pyxbld(可能%userprofile%\.pyxbld在Windows上)的子目录中.
import numpy as np
import pyximport
pyximport.install(setup_args={'include_dirs': [np.get_include()]})
open('_tmp.pyx', 'w').write('''
cimport numpy as np
cpdef function(np.ndarray[np.float32_t, ndim=2] response, max_loc):
cdef unsigned int p_one, q_one
p_one = int(max_loc[0])
q_one = int(max_loc[1])
p_two = int(max_loc[0])
q_two = int(max_loc[1])
r_one = response[q_one, p_one]
r_two = response[q_two, p_two]
''')
import _tmp
assert(hasattr(_tmp, 'function'))
Run Code Online (Sandbox Code Playgroud)
这是为感兴趣的部分生成的C代码(稍微重新格式化以使其更易于阅读).事实证明,当您使用C unsigned int索引变量时,生成的代码直接从数组缓冲区和调用中获取数据PyFloat_FromDouble,这会强制它double.另一方面,当您使用Python int索引变量时,它采用通用方法.它形成一个元组并调用PyObject_GetItem.这种方式允许ndarray正确地遵守np.float32dtype.
#define __Pyx_BufPtrStrided2d(type, buf, i0, s0, i1, s1) \
(type)((char*)buf + i0 * s0 + i1 * s1)
/* "_tmp.pyx":9
* p_two = int(max_loc[0])
* q_two = int(max_loc[1])
* r_one = response[q_one, p_one] # <<<<<<<<<<<<<<
* r_two = response[q_two, p_two]
*/
__pyx_t_3 = __pyx_v_q_one;
__pyx_t_4 = __pyx_v_p_one;
__pyx_t_5 = -1;
if (unlikely(__pyx_t_3 >= (size_t)__pyx_bshape_0_response))
__pyx_t_5 = 0;
if (unlikely(__pyx_t_4 >= (size_t)__pyx_bshape_1_response))
__pyx_t_5 = 1;
if (unlikely(__pyx_t_5 != -1)) {
__Pyx_RaiseBufferIndexError(__pyx_t_5);
{
__pyx_filename = __pyx_f[0];
__pyx_lineno = 9;
__pyx_clineno = __LINE__;
goto __pyx_L1_error;
}
}
__pyx_t_1 = PyFloat_FromDouble((
*__Pyx_BufPtrStrided2d(
__pyx_t_5numpy_float32_t *,
__pyx_bstruct_response.buf,
__pyx_t_3, __pyx_bstride_0_response,
__pyx_t_4, __pyx_bstride_1_response)));
if (unlikely(!__pyx_t_1)) {
__pyx_filename = __pyx_f[0];
__pyx_lineno = 9;
__pyx_clineno = __LINE__;
goto __pyx_L1_error;
}
__Pyx_GOTREF(__pyx_t_1);
__pyx_v_r_one = __pyx_t_1;
__pyx_t_1 = 0;
/* "_tmp.pyx":10
* q_two = int(max_loc[1])
* r_one = response[q_one, p_one]
* r_two = response[q_two, p_two] # <<<<<<<<<<<<<<
*/
__pyx_t_1 = PyTuple_New(2);
if (unlikely(!__pyx_t_1)) {
__pyx_filename = __pyx_f[0];
__pyx_lineno = 10;
__pyx_clineno = __LINE__;
goto __pyx_L1_error;
}
__Pyx_GOTREF(((PyObject *)__pyx_t_1));
__Pyx_INCREF(__pyx_v_q_two);
PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v_q_two);
__Pyx_GIVEREF(__pyx_v_q_two);
__Pyx_INCREF(__pyx_v_p_two);
PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_v_p_two);
__Pyx_GIVEREF(__pyx_v_p_two);
__pyx_t_2 = PyObject_GetItem(
((PyObject *)__pyx_v_response),
((PyObject *)__pyx_t_1));
if (!__pyx_t_2) {
__pyx_filename = __pyx_f[0];
__pyx_lineno = 10;
__pyx_clineno = __LINE__;
goto __pyx_L1_error;
}
__Pyx_GOTREF(__pyx_t_2);
__Pyx_DECREF(((PyObject *)__pyx_t_1));
__pyx_t_1 = 0;
__pyx_v_r_two = __pyx_t_2;
__pyx_t_2 = 0;
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1296 次 |
| 最近记录: |