Jen*_*nny 4 r try-catch assign
我对R很新,我对正确用法感到困惑tryCatch
.我的目标是对大型数据集进行预测.如果预测无法适应内存,我想通过拆分数据来规避问题.
现在,我的代码大致如下:
tryCatch({
large_vector = predict(model, large_data_frame)
}, error = function(e) { # I ran out of memory
for (i in seq(from = 1, to = dim(large_data_frame)[1], by = 1000)) {
small_vector = predict(model, large_data_frame[i:(i+step-1), ])
save(small_vector, tmpfile)
}
rm(large_data_frame) # free memory
large_vector = NULL
for (i in seq(from = 1, to = dim(large_data_frame)[1], by = 1000)) {
load(tmpfile)
unlink(tmpfile)
large_vector = c(large_vector, small_vector)
}
})
Run Code Online (Sandbox Code Playgroud)
关键是如果没有错误发生,large_vector
则按预期填充我的预测.如果发生错误,large_vector
似乎只存在于错误代码的命名空间中 - 这是有道理的,因为我将其声明为函数.出于同样的原因,我收到一条警告说large_data_frame
无法删除.
不幸的是,这种行为不是我想要的.我想large_vector
从我的错误函数中分配变量.我认为一种可能性是指定环境并使用assign.因此,我会在我的错误代码中使用以下语句:
rm(large_data_frame, envir = parent.env(environment()))
[...]
assign('large_vector', large_vector, parent.env(environment()))
Run Code Online (Sandbox Code Playgroud)
但是,这个解决方案对我来说似乎很脏.我想知道是否有可能用"干净"的代码实现我的目标?
[编辑]似乎有些混乱,因为我把上面的代码主要用来说明问题,而不是给出一个有效的例子.这是一个显示命名空间问题的最小示例:
# Example 1 : large_vector fits into memory
rm(large_vector)
tryCatch({
large_vector = rep(5, 1000)
}, error = function(e) {
# do stuff to build the vector
large_vector = rep(3, 1000)
})
print(large_vector) # all 5
# Example 2 : pretend large_vector does not fit into memory; solution using parent environment
rm(large_vector)
tryCatch({
stop(); # simulate error
}, error = function(e) {
# do stuff to build the vector
large_vector = rep(3, 1000)
assign('large_vector', large_vector, parent.env(environment()))
})
print(large_vector) # all 3
# Example 3 : pretend large_vector does not fit into memory; namespace issue
rm(large_vector)
tryCatch({
stop(); # simulate error
}, error = function(e) {
# do stuff to build the vector
large_vector = rep(3, 1000)
})
print(large_vector) # does not exist
Run Code Online (Sandbox Code Playgroud)
我会做这样的事情:
res <- tryCatch({
large_vector = predict(model, large_data_frame)
}, error = function(e) { # I ran out of memory
ll <- lapply(split(data,seq(1,nrow(large_data_frame),1000)),
function(x)
small_vector = predict(model, x))
return(ll)
})
rm(large_data_frame)
if(is.list(ll))
res <- do.call(rbind,res)
Run Code Online (Sandbox Code Playgroud)
如果耗尽内存,我们的想法是返回预测结果列表.
注意,我不确定这里的结果,因为我们没有可重复的例子.