除了"情绪"之外还有其他任何一个包来做R中的情感分析吗?

use*_*217 9 r sentiment-analysis

R中的"情绪"包已从Cran存储库中删除.什么是其他可以做情感分析的套餐?

例如,我如何使用其他包重写它?

 library(sentiment)
# CLASSIFY EMOTIONS
classify_emotion(some_txt,algorithm="bayes",verbose=TRUE)
# classify polarity
class_pol = classify_polarity(some_txt, algorithm="bayes")
Run Code Online (Sandbox Code Playgroud)

这里的文件定义为:

# DEFINE text
some_txt<- c("I am very happy at stack overflow , excited, and optimistic.",
                "I am very scared from OP question, annoyed, and irritated.")
Run Code Online (Sandbox Code Playgroud)

ags*_*udy 12

我找不到sentiment包.这是基于tm.plugin.sentiment包.你可以在这里找到它.

首先,我创建我的语料库:

some_txt<- c("I am very happy at stack overflow , excited, and optimistic.",
+              "I am very scared from OP question, annoyed, and irritated.")
 text.corpus <- Corpus(VectorSource(some_txt))
Run Code Online (Sandbox Code Playgroud)

然后,我在语料库上应用分数

> text.corpus <- score(text.corpus)
Run Code Online (Sandbox Code Playgroud)

结果存储在元数据中:

> meta(text.corpus)
  MetaID polarity subjectivity pos_refs_per_ref neg_refs_per_ref senti_diffs_per_ref
1      0        0    0.2857143        0.1428571        0.1428571           0.0000000
2      0       -1    0.1428571        0.0000000        0.1428571          -0.1428571
Run Code Online (Sandbox Code Playgroud)

代码背后的score函数(默认行为),将使用这些tm函数预处理语料库:

  • 降低
  • removePunctuation
  • removeNumbers = TRUE,
  • removeWords = list(停用词("英语")),
  • stripWhitespace
  • stemDocument
  • minWordLength = 3,

然后,应用评分函数:

  • 极性
  • 主观性
  • pos_refs_per_ref
  • neg_refs_per_ref
  • senti_diffs_per_ref