Lor*_*Goo 10 stack-overflow performance scala tail-recursion
我编写了一个天真的测试平台来测量三种阶乘实现的性能:基于循环,非尾递归和尾递归.
令我惊讶的是,最差的性能是循环的(«while»预计效率更高,所以我提供了两者) ,其成本几乎是尾部递归替代的两倍.
答案:修复循环实现,避免使用BigInt的*=运算符,因为其内部«循环»变得如预期的那样快
我遇到的另一个"woodoo"行为是StackOverflow异常,在非尾递归实现的情况下,对于相同的输入没有抛出异常.我可以通过逐步调用具有越来越大的值的函数来规避StackOverlow ...我感到很疯狂:) 答案:JVM需要在启动期间收敛,然后行为是连贯的和系统的
这是代码:
final object Factorial {
type Out = BigInt
def calculateByRecursion(n: Int): Out = {
require(n>0, "n must be positive")
n match {
case _ if n == 1 => return 1
case _ => return n * calculateByRecursion(n-1)
}
}
def calculateByForLoop(n: Int): Out = {
require(n>0, "n must be positive")
var accumulator: Out = 1
for (i <- 1 to n)
accumulator = i * accumulator
accumulator
}
def calculateByWhileLoop(n: Int): Out = {
require(n>0, "n must be positive")
var accumulator: Out = 1
var i = 1
while (i <= n) {
accumulator = i * accumulator
i += 1
}
accumulator
}
def calculateByTailRecursion(n: Int): Out = {
require(n>0, "n must be positive")
@tailrec def fac(n: Int, acc: Out): Out = n match {
case _ if n == 1 => acc
case _ => fac(n-1, n * acc)
}
fac(n, 1)
}
def calculateByTailRecursionUpward(n: Int): Out = {
require(n>0, "n must be positive")
@tailrec def fac(i: Int, acc: Out): Out = n match {
case _ if i == n => n * acc
case _ => fac(i+1, i * acc)
}
fac(1, 1)
}
def comparePerformance(n: Int) {
def showOutput[A](msg: String, data: (Long, A), showOutput:Boolean = false) =
showOutput match {
case true => printf("%s returned %s in %d ms\n", msg, data._2.toString, data._1)
case false => printf("%s in %d ms\n", msg, data._1)
}
def measure[A](f:()=>A): (Long, A) = {
val start = System.currentTimeMillis
val o = f()
(System.currentTimeMillis - start, o)
}
showOutput ("By for loop", measure(()=>calculateByForLoop(n)))
showOutput ("By while loop", measure(()=>calculateByWhileLoop(n)))
showOutput ("By non-tail recursion", measure(()=>calculateByRecursion(n)))
showOutput ("By tail recursion", measure(()=>calculateByTailRecursion(n)))
showOutput ("By tail recursion upward", measure(()=>calculateByTailRecursionUpward(n)))
}
}
Run Code Online (Sandbox Code Playgroud)
接下来是sbt控制台的一些输出(Before«while»实现):
scala> example.Factorial.comparePerformance(10000)
By loop in 3 ns
By non-tail recursion in >>>>> StackOverflow!!!!!… see later!!!
........
scala> example.Factorial.comparePerformance(1000)
By loop in 3 ms
By non-tail recursion in 1 ms
By tail recursion in 4 ms
scala> example.Factorial.comparePerformance(5000)
By loop in 105 ms
By non-tail recursion in 27 ms
By tail recursion in 34 ms
scala> example.Factorial.comparePerformance(10000)
By loop in 236 ms
By non-tail recursion in 106 ms >>>> Now works!!!
By tail recursion in 127 ms
scala> example.Factorial.comparePerformance(20000)
By loop in 977 ms
By non-tail recursion in 495 ms
By tail recursion in 564 ms
scala> example.Factorial.comparePerformance(30000)
By loop in 2285 ms
By non-tail recursion in 1183 ms
By tail recursion in 1281 ms
Run Code Online (Sandbox Code Playgroud)
接下来是sbt控制台的一些输出(After«while»实现):
scala> example.Factorial.comparePerformance(10000)
By for loop in 252 ms
By while loop in 246 ms
By non-tail recursion in 130 ms
By tail recursion in 136 ns
scala> example.Factorial.comparePerformance(20000)
By for loop in 984 ms
By while loop in 1091 ms
By non-tail recursion in 508 ms
By tail recursion in 560 ms
Run Code Online (Sandbox Code Playgroud)
接下来是sbt控制台的一些输出(在«向上»尾部递归实现之后)世界恢复正常:
scala> example.Factorial.comparePerformance(10000)
By for loop in 259 ms
By while loop in 229 ms
By non-tail recursion in 114 ms
By tail recursion in 119 ms
By tail recursion upward in 105 ms
scala> example.Factorial.comparePerformance(20000)
By for loop in 1053 ms
By while loop in 957 ms
By non-tail recursion in 513 ms
By tail recursion in 565 ms
By tail recursion upward in 470 ms
Run Code Online (Sandbox Code Playgroud)
接下来是在"循环"中修复BigInt乘法后sbt控制台的一些输出:世界是完全理智的:
scala> example.Factorial.comparePerformance(20000)
By for loop in 498 ms
By while loop in 502 ms
By non-tail recursion in 521 ms
By tail recursion in 611 ms
By tail recursion upward in 503 ms
Run Code Online (Sandbox Code Playgroud)
BigInt开销和我的愚蠢实现掩盖了预期的行为.
多谢你们
PS.:最后我应该将这篇文章重新命名为«关于BigInts的课程»
Rex*_*err 12
For循环实际上并不是完全循环; 他们是对范围的理解.如果你真的想要一个循环,你需要使用while
.(实际上,我认为BigInt
这里的乘法很重,所以它应该没关系.但你会注意到你是否乘以Int
s.)
此外,你使用混淆了自己BigInt
.你的越大BigInt
,你的乘法越慢.因此,当你的尾递归循环减少时,你的非尾循环会计数,这意味着后者有更大的数字可以乘以.
如果你修复了这两个问题,你会发现恢复了理智:循环和尾递归速度相同,常规递归和for
慢速.(如果JVM优化使其等效,则常规递归可能不会更慢)
(此外,堆栈溢出修复可能是因为JVM开始内联,并且可能使调用尾部递归,或者将循环展开得足够远,以便不再溢出.)
最后,你用for和while会得到糟糕的结果,因为你在右边而不是在左边乘以小数字.事实证明,Java的BigInt与左侧较小的数字相乘的速度更快.