Eri*_*ail 25 plot r visualize heatmap ggplot2
我正在使用Paul Bleicher的日历热图来随着时间的推移可视化一些事件,我有兴趣添加 黑白填充图案而不是(或在颜色编码之上)以增加日历热图的可读性.黑白打印.
以下是Calendar Heatmap颜色的示例,
这是黑白相间的样子,
很难区分黑人和白人的各个级别.
是否有一种简单的方法可以让R为6级而不是颜色添加某种模式?
source("http://blog.revolution-computing.com/downloads/calendarHeat.R")
stock <- "MSFT"
start.date <- "2012-01-12"
end.date <- Sys.Date()
quote <- paste("http://ichart.finance.yahoo.com/table.csv?s=", stock, "&a=", substr(start.date,6,7), "&b=", substr(start.date, 9, 10), "&c=", substr(start.date, 1,4), "&d=", substr(end.date,6,7), "&e=", substr(end.date, 9, 10), "&f=", substr(end.date, 1,4), "&g=d&ignore=.csv", sep="")
stock.data <- read.csv(quote, as.is=TRUE)
# convert the continuous var to a categorical var
stock.data$by <- cut(stock.data$Adj.Close, b = 6, labels = F)
calendarHeat(stock.data$Date, stock.data$by, varname="MSFT Adjusted Close")
Run Code Online (Sandbox Code Playgroud)
我设想在日历热图中的各个日框中添加一个模式,因为模式被添加到此图中右侧(B)的饼图中的各个切片中,
ags*_*udy 16
在他成为赏金之前我回答了这个问题.看起来OP看起来我以前的答案有点复杂.我在这里用一个要点组织了代码.你只需要下载文件并获取它.
我创建了新函数extra.calendarHeat
,它是第一个绘制双时间序列hetmap的扩展.(dat,value1,value2).我添加了这个新参数:
pch.symbol : vector of symbols , defualt 15:20
cex.symbol : cex of the symbols , default = 2
col.symbol : color of symbols , default #00000044
pvalues : value of symbols
Run Code Online (Sandbox Code Playgroud)
这里有一些例子:
## I am using same data
stock <- "MSFT"
start.date <- "2012-01-12"
end.date <- Sys.Date()
quote <- paste("http://ichart.finance.yahoo.com/table.csv?s=",
stock,
"&a=", substr(start.date,6,7),
"&b=", substr(start.date, 9, 10),
"&c=", substr(start.date, 1,4),
"&d=", substr(end.date,6,7),
"&e=", substr(end.date, 9, 10),
"&f=", substr(end.date, 1,4),
"&g=d&ignore=.csv", sep="")
stock.data <- read.csv(quote, as.is=TRUE)
p1 <- extra.calendarHeat(dates= stock.data$Date, values = stock.data$Adj.Close,
pvalues = stock.data$Volume,
varname="W&B MSFT Adjusted Close
\n Volume as no border symbol ")
Run Code Online (Sandbox Code Playgroud)
## multiply symbols
p2 <- extra.calendarHeat(dates= stock.data$Date, values = stock.data$Adj.Close,
pvalues = stock.data$Volume,
varname="W&B MSFT Adjusted Close \n
black Volume as multiply symbol ",
pch.symbol = c(3,4,8,9),
col.symbol='black')
Run Code Online (Sandbox Code Playgroud)
## circles symbols
p3 <- extra.calendarHeat(dates= stock.data$Date, values = stock.data$Adj.Close,
pvalues = stock.data$Volume,
varname="W&B MSFT Adjusted Close \n blue Volume as circles",
pch.symbol = c(1,10,13,16,18),
col.symbol='blue')
Run Code Online (Sandbox Code Playgroud)
## triangles symbols
p4 <- extra.calendarHeat(dates= stock.data$Date, values = stock.data$Adj.Close,
pvalues = stock.data$Volume,
varname="W&B MSFT Adjusted Close \n red Volume as triangles",
pch.symbol = c(2,6,17,24,25),
col.symbol='red')
Run Code Online (Sandbox Code Playgroud)
p5 <- extra.calendarHeat(dates= stock.data$Date, values = stock.data$Adj.Close,
varname="MSFT Adjusted Close",
pch.symbol = LETTERS,
col.symbol='black')
Run Code Online (Sandbox Code Playgroud)
# symbols are LETTERS
p6 <- extra.calendarHeat(dates= stock.data$Date, values = stock.data$Adj.Close,
pvalues = stock.data$Volume,
varname="MSFT Adjusted Close \n Volume as LETTERS symbols",
pch.symbol = letters,
color='r2b')
Run Code Online (Sandbox Code Playgroud)
ags*_*udy 12
你可以panel.level.plot
从中latticeExtra
添加模式.我认为问的问题有点具体.所以我试着概括它.我们的想法是将时间序列转换为日历热图:使用2种模式(填充颜色和形状).我们可以想象多个时间序列(关闭/打开).例如,你可以得到这样的东西
或者像这样,使用ggplot2主题:
该函数calendarHeat
给出一个时间序列(dat,value),转换如下数据:
date.seq value dotw woty yr month seq
1 2012-01-01 NA 0 2 2012 1 1
2 2012-01-02 NA 1 2 2012 1 2
3 2012-01-03 NA 2 2 2012 1 3
4 2012-01-04 NA 3 2 2012 1 4
5 2012-01-05 NA 4 2 2012 1 5
6 2012-01-06 NA 5 2 2012 1 6
Run Code Online (Sandbox Code Playgroud)
所以,我认为我有格式化这样的数据,否则,我从calendarHeat提取的数据转换部分在一个函数(见本要点)
dat <- transformdata(stock.data$Date, stock.data$by)
Run Code Online (Sandbox Code Playgroud)
然后日历本质上是一个levelplot
自定义sacles
,自定义theme
和自定义panel' function
.
library(latticeExtra)
levelplot(value~woty*dotw | yr, data=dat, border = "black",
layout = c(1, nyr%%7),
col.regions = (calendar.pal(ncolors)),
aspect='iso',
between = list(x=0, y=c(1,1)),
strip=TRUE,
panel = function(...) {
panel.levelplot(...)
calendar.division(...)
panel.levelplot.points(...,na.rm=T,
col='blue',alpha=0.5,
## you can play with cex and pch here to get the pattern you
## like
cex =dat$value/max(dat$value,na.rm=T)*3
pch=ifelse(is.na(dat$value),NA,20),
type = c("p"))
},
scales= scales,
xlim =extendrange(dat$woty,f=0.01),
ylim=extendrange(dat$dotw,f=0.1),
cuts= ncolors - 1,
colorkey= list(col = calendar.pal(ncolors), width = 0.6, height = 0.5),
subscripts=TRUE,
par.settings = calendar.theme)
Run Code Online (Sandbox Code Playgroud)
比例是:
scales = list(
x = list( at= c(seq(2.9, 52, by=4.42)),
labels = month.abb,
alternating = c(1, rep(0, (nyr-1))),
tck=0,
cex =1),
y=list(
at = c(0, 1, 2, 3, 4, 5, 6),
labels = c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday"),
alternating = 1,
cex =1,
tck=0))
Run Code Online (Sandbox Code Playgroud)
主题是:
calendar.theme <- list(
xlab=NULL,ylab=NULL,
strip.background = list(col = "transparent"),
strip.border = list(col = "transparent"),
axis.line = list(col="transparent"),
par.strip.text=list(cex=2))
Run Code Online (Sandbox Code Playgroud)
面板功能使用caelendar.division功能.事实上,网格的划分(月黑色计数)非常长,并且使用grid
硬盘包装(面板焦点...)完成.我稍微改了一下,现在我在格子面板功能中调用它:caelendar.division.
我们可以使用ggplot2 scale_shape_manual
来获得看起来接近阴影的形状,我们可以在灰色热图上绘制这些形状.
注意:这是根据@ Jay 在日历热图的原始博客文章中的评论改编的
# PACKAGES
library(ggplot2)
library(data.table)
# Transofrm data
stock.data <- transform(stock.data,
week = as.POSIXlt(Date)$yday %/% 7 + 1,
month = as.POSIXlt(Date)$mon + 1,
wday = factor(as.POSIXlt(Date)$wday, levels=0:6, labels=levels(weekdays(1, abb=FALSE)), ordered=TRUE),
year = as.POSIXlt(Date)$year + 1900)
# find when the months change
# Not used, but could be
stock.data$mchng <- as.logical(c(0, diff(stock.data$month)))
# we need dummy data for Sunday / Saturday to be included.
# These added rows will not be plotted due to their NA values
dummy <- as.data.frame(stock.data[1:2, ])
dummy[, -which(names(dummy) %in% c("wday", "year"))] <- NA
dummy[, "wday"] <- weekdays(2:3, FALSE)
dummy[, "mchng"] <- TRUE
rbind(dummy, stock.data) -> stock.data
# convert the continuous var to a categorical var
stock.data$Adj.Disc <- cut(stock.data$Adj.Close, b = 6, labels = F)
# vals is the greyscale tones used for the outer monthly borders
vals <- gray(c(.2, .5))
# PLOT
# Expected warning due to dummy variable with NA's:
# Warning message:
# Removed 2 rows containing missing values (geom_point).
ggplot(stock.data) +
aes(week, wday, fill=as.factor(Adj.Disc),
shape=as.factor(Adj.Disc), color=as.factor(month %% 2)) +
geom_tile(linetype=1, size=1.8) +
geom_tile(linetype=6, size=0.4, color="white") +
scale_color_manual(values=vals) +
geom_point(aes(alpha=0.2), color="black") +
scale_fill_grey(start=0, end=0.9) + scale_shape_manual(values=c(2, 3, 4, 12, 14, 8)) +
theme(legend.position="none") + labs(y="Day of the Week") + facet_wrap(~ year, ncol = 1)
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
8594 次 |
最近记录: |