Ale*_*lex 11 r data.table
我希望能够编写一个data.table按组运行回归的函数,然后很好地组织结果.以下是我想要做的一个示例:
require(data.table)
dtb = data.table(y=1:10, x=10:1, z=sample(1:10), weights=1:10, thedate=1:2)
models = c("y ~ x", "y ~ z")
res = lapply(models, function(f) {dtb[,as.list(coef(lm(f, weights=weights, data=.SD))),by=thedate]})
#do more stuff with res
Run Code Online (Sandbox Code Playgroud)
我想将所有这些包装成一个函数,因为它#doe more stuff可能很长.我面临的问题是如何将各种名称传递给data.table?例如,如何传递列名weights?我怎么通过thedate?我想象一个看起来像这样的原型:
myfun = function(dtb, models, weights, dates)
Run Code Online (Sandbox Code Playgroud)
让我说清楚:将公式传递给我的函数不是问题.如果weights我想使用和描述日期的列名称thedate已知,那么我的函数可能看起来像这样:
myfun = function(dtb, models) {
res = lapply(models, function(f) {dtb[,as.list(coef(lm(f, weights=weights, data=.SD))),by=thedate]})
#do more stuff with res
}
Run Code Online (Sandbox Code Playgroud)
但是,对应于thedate和对应的列名称weights是事先未知的.我想将它们传递给我的函数:
#this will not work
myfun = function(dtb, models, w, d) {
res = lapply(models, function(f) {dtb[,as.list(coef(lm(f, weights=w, data=.SD))),by=d]})
#do more stuff with res
}
Run Code Online (Sandbox Code Playgroud)
谢谢
这是一个依赖于长格式数据的解决方案(这对我来说更有意义,在这个cas中
library(reshape2)
dtlong <- data.table(melt(dtb, measure.var = c('x','z')))
foo <- function(f, d, by, w ){
# get the name of the w argument (weights)
w.char <- deparse(substitute(w))
# convert `list(a,b)` to `c('a','b')`
# obviously, this would have to change depending on how `by` was defined
by <- unlist(lapply(as.list(as.list(match.call())[['by']])[-1], as.character))
# create the call substituting the names as required
.c <- substitute(as.list(coef(lm(f, data = .SD, weights = w), list(w = as.name(w.char)))))
# actually perform the calculations
d[,eval(.c), by = by]
}
foo(f= y~value, d= dtlong, by = list(variable, thedate), w = weights)
variable thedate (Intercept) value
1: x 1 11.000000 -1.00000000
2: x 2 11.000000 -1.00000000
3: z 1 1.009595 0.89019190
4: z 2 7.538462 -0.03846154
Run Code Online (Sandbox Code Playgroud)