熊猫版rbind

N. *_*cA. 55 python r dataframe pandas

在R中,您可以通过使用rbind将一列的列粘贴到另一列的底部来组合两个数据帧.在熊猫中,你如何完成同样的事情?这看起来很奇怪.

使用追加导致一个可怕的混乱,包括NaNs和事情,原因我不明白.我只是试图"rbind"两个相同的框架,看起来像这样:

编辑:我是以一种愚蠢的方式创建DataFrames,这导致了问题.将= rbind追加到所有意图和目的.见下面的答案.

        0         1       2        3          4          5        6                    7
0   ADN.L  20130220   437.4   442.37   436.5000   441.9000  2775364  2013-02-20 18:47:42
1   ADM.L  20130220  1279.0  1300.00  1272.0000  1285.0000   967730  2013-02-20 18:47:42
2   AGK.L  20130220  1717.0  1749.00  1709.0000  1739.0000   834534  2013-02-20 18:47:43
3  AMEC.L  20130220  1030.0  1040.00  1024.0000  1035.0000  1972517  2013-02-20 18:47:43
4   AAL.L  20130220  1998.0  2014.50  1942.4999  1951.0000  3666033  2013-02-20 18:47:44
5  ANTO.L  20130220  1093.0  1097.00  1064.7899  1068.0000  2183931  2013-02-20 18:47:44
6   ARM.L  20130220   941.5   965.10   939.4250   951.5001  2994652  2013-02-20 18:47:45
Run Code Online (Sandbox Code Playgroud)

但是我得到了一些可怕的东西:

        0         1        2        3          4         5        6                    7       0         1       2        3          4          5        6                    7
0     NaN       NaN      NaN      NaN        NaN       NaN      NaN                  NaN   ADN.L  20130220   437.4   442.37   436.5000   441.9000  2775364  2013-02-20 18:47:42
1     NaN       NaN      NaN      NaN        NaN       NaN      NaN                  NaN   ADM.L  20130220  1279.0  1300.00  1272.0000  1285.0000   967730  2013-02-20 18:47:42
2     NaN       NaN      NaN      NaN        NaN       NaN      NaN                  NaN   AGK.L  20130220  1717.0  1749.00  1709.0000  1739.0000   834534  2013-02-20 18:47:43
3     NaN       NaN      NaN      NaN        NaN       NaN      NaN                  NaN  AMEC.L  20130220  1030.0  1040.00  1024.0000  1035.0000  1972517  2013-02-20 18:47:43
4     NaN       NaN      NaN      NaN        NaN       NaN      NaN                  NaN   AAL.L  20130220  1998.0  2014.50  1942.4999  1951.0000  3666033  2013-02-20 18:47:44
5     NaN       NaN      NaN      NaN        NaN       NaN      NaN                  NaN  ANTO.L  20130220  1093.0  1097.00  1064.7899  1068.0000  2183931  2013-02-20 18:47:44
6     NaN       NaN      NaN      NaN        NaN       NaN      NaN                  NaN   ARM.L  20130220   941.5   965.10   939.4250   951.5001  2994652  2013-02-20 18:47:45
0     NaN       NaN      NaN      NaN        NaN       NaN      NaN                  NaN   ADN.L  20130220   437.4   442.37   436.5000   441.9000  2775364  2013-02-20 18:47:42
1     NaN       NaN      NaN      NaN        NaN       NaN      NaN                  NaN   ADM.L  20130220  1279.0  1300.00  1272.0000  1285.0000   967730  2013-02-20 18:47:42
2     NaN       NaN      NaN      NaN        NaN       NaN      NaN                  NaN   AGK.L  20130220  1717.0  1749.00  1709.0000  1739.0000   834534  2013-02-20 18:47:43
3     NaN       NaN      NaN      NaN        NaN       NaN      NaN                  NaN  
Run Code Online (Sandbox Code Playgroud)

我不明白为什么.我开始想念R :(

N. *_*cA. 35

啊,这与我如何创建DataFrame有关,而不是我如何组合它们.如果你使用循环和一个如下所示的语句创建一个框架,那么它的长和短是:

Frame = Frame.append(pandas.DataFrame(data = SomeNewLineOfData))
Run Code Online (Sandbox Code Playgroud)

您必须忽略该索引

Frame = Frame.append(pandas.DataFrame(data = SomeNewLineOfData), ignore_index=True)
Run Code Online (Sandbox Code Playgroud)

或者,在组合数据时您将遇到问题.

  • 或者,更好的是:不要在循环内调用“df.append”,它是二次复杂度。相反,将 DataFrame 添加到列表中并在最后调用“pd.concat”。 (3认同)
  • 因此,在提出问题后回头看一下,我认为值得注意的是-*这是制作数据框的糟糕方法*。最好先构造一个字典列表,然后再调用构造函数。 (2认同)

abu*_*dis 21

这对我有用:

import numpy as np
import pandas as pd

dates = np.asarray(pd.date_range('1/1/2000', periods=8))
df1 = pd.DataFrame(np.random.randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D'])
df2 = df1.copy()
df = df1.append(df2)
Run Code Online (Sandbox Code Playgroud)

产量:

                   A         B         C         D
2000-01-01 -0.327208  0.552500  0.862529  0.493109
2000-01-02  1.039844 -2.141089 -0.781609  1.307600
2000-01-03 -0.462831  0.066505 -1.698346  1.123174
2000-01-04 -0.321971 -0.544599 -0.486099 -0.283791
2000-01-05  0.693749  0.544329 -1.606851  0.527733
2000-01-06 -2.461177 -0.339378 -0.236275  0.155569
2000-01-07 -0.597156  0.904511  0.369865  0.862504
2000-01-08 -0.958300 -0.583621 -2.068273  0.539434
2000-01-01 -0.327208  0.552500  0.862529  0.493109
2000-01-02  1.039844 -2.141089 -0.781609  1.307600
2000-01-03 -0.462831  0.066505 -1.698346  1.123174
2000-01-04 -0.321971 -0.544599 -0.486099 -0.283791
2000-01-05  0.693749  0.544329 -1.606851  0.527733
2000-01-06 -2.461177 -0.339378 -0.236275  0.155569
2000-01-07 -0.597156  0.904511  0.369865  0.862504
2000-01-08 -0.958300 -0.583621 -2.068273  0.539434
Run Code Online (Sandbox Code Playgroud)

如果您还没有使用pandas我的最新版本,强烈建议升级.现在可以使用包含重复索引的DataFrame进行操作.


B.M*_*.W. 16

pd.concat将服务rbind于R 的目的.

import pandas as pd
df1 = pd.DataFrame({'col1': [1,2], 'col2':[3,4]})
df2 = pd.DataFrame({'col1': [5,6], 'col2':[7,8]})
print(df1)
print(df2)
print(pd.concat([df1, df2]))
Run Code Online (Sandbox Code Playgroud)

结果如下:

   col1  col2
0     1     3
1     2     4
   col1  col2
0     5     7
1     6     8
   col1  col2
0     1     3
1     2     4
0     5     7
1     6     8
Run Code Online (Sandbox Code Playgroud)

如果你仔细阅读文档,它也会解释其他操作,如cbind,.. iec.


Fai*_*sin 5

是的, R 中的rbind()(行绑定数据帧)和cbind()(列绑定数据帧)非常简单直观。

您可以使用 pandas 库中的“concat()”函数来实现相同的目的。pandas 中的等效内容rbind(df1,df2)如下:

pd.concat([df1, df2], ignore_index = True)
Run Code Online (Sandbox Code Playgroud)

不过,为了便于使用,我在下面使用 pandas 编写了 rbind() 和 cbind() 函数。


    def rbind(df1, df2):
        import pandas as pd
        return pd.concat([df1, df2], ignore_index = True)

    def cbind(df1, df2):
        import pandas as pd
        # Note this does not keep the original indexes of the df's and resets them to 0,1,...
        return pd.concat([df1.reset_index(drop=True), df2.reset_index(drop=True)], axis = 1)

Run Code Online (Sandbox Code Playgroud)

如果复制、粘贴并运行上述函数,您可以在 python 中使用这些函数,就像在 R 中使用它们一样。此外,它们与 R 对应函数具有相同的假设,例如 rbind(df1, df2): df1和 df2 需要具有相同的列名。

下面是该函数的示例rbind()

import pandas as pd

dict1 = {'Name': ['Ali', 'Craig', 'Shaz', 'Maheen'], 'Age': [36, 38, 33, 34]} 
dict2 = {'Name': ['Fahad', 'Tyler', 'Thai-Son', 'Shazmeen', 'Uruj', 'Tatyana'], 'Age': [42, 27, 29, 60, 42, 31]}

data1 = pd.DataFrame(dict1)
data2 = pd.DataFrame(dict2) 

# We now row-bind the two dataframes and save it as df_final.

df_final = rbind(data1, data2)

print(df_final)

Run Code Online (Sandbox Code Playgroud)

这是我创建的一个开放的公共 GitHub 存储库文件,用于在一个中心位置编写和整合 Python 等效 R 函数: https://github.com/CubeStatistica/Learning-Data-Science-Properly-for-Work-and-Production-Using -Python/blob/main/Writing-R-Functions-in-Python.ipynb

请随意贡献。

快乐编码!