jam*_*o00 7 algorithm f# ocaml functional-programming tail-recursion
我在F#中以非常标准的方式实施了Levenshtein Distance作为练习
let lastchar (s:string) = s.Substring(s.Length-1, 1)
let lastchar_substring (s:string) len = s.Substring(len-1, 1)
let rec levdist (sa:string) (sb:string) alen blen = match alen, blen with
| -1, -1 -> levdist sa sb sa.Length sb.Length
| 0, 0 -> 0
| _ , 0 -> alen
| 0, _ -> blen
| _ -> List.min [ (* How do I make this tail recursive...? *)
(levdist sa sb (alen-1) blen) + 1;
(levdist sa sb alen (blen-1)) + 1;
(levdist sa sb (alen-1) (blen-1)) +
match (lastchar_substring sa alen), (lastchar_substring sb blen) with
| x, y when x = y -> 0
| _ -> 1
])
Run Code Online (Sandbox Code Playgroud)
但是,我没有看到将List.min调用转换为尾递归的简单方法.我们不是简单地在递归调用之后进行一些额外的独立计算; 相反,我们选择多个递归调用的结果.
有没有办法优雅地将其转换为尾递归?
(我可以很容易地将其转换+1为尾递归)
Tom*_*cek 12
通常,当您想将代码转换为尾递归形式时,您有两个选择:
正如Jeffrey所说,延续传递样式看起来有点难看,因为你必须转换所有函数以获取另一个函数并通过调用返回结果.但是,你可以使它更好一点,因为continuation是monad,所以你可以使用计算表达式.
如果您定义以下计算构建器:
// Computation that uses CPS - when given a continuation
// it does some computation and return the result
type Cont<'T, 'R> = (('T -> 'R) -> 'R)
type ContBuilder() =
member x.Return(v) : Cont<'T, 'R> = fun k -> k v
member x.ReturnFrom(r) = r
member x.Bind(vf:Cont<'T1, 'R>, f:'T1 -> Cont<'T2, 'R>) : Cont<'T2, 'R> =
fun k -> vf (fun v -> f v k)
let cont = ContBuilder()
Run Code Online (Sandbox Code Playgroud)
然后你可以从@gradbot重写解决方案如下(并摆脱lambda函数的显式构造):
let levdist (sa:string) (sb:string) =
let rec levdist_cont (sa:string) (sb:string) alen blen = cont {
match alen, blen with
| -1, -1 -> return! levdist_cont sa sb sa.Length sb.Length
| 0, 0 -> return 0
| _, 0 -> return alen
| 0, _ -> return blen
| _ ->
let! l1 = levdist_cont sa sb (alen - 1) (blen )
let! l2 = levdist_cont sa sb (alen ) (blen - 1)
let! l3 = levdist_cont sa sb (alen - 1) (blen - 1)
let d = if (lastchar_substring sa alen) = (lastchar_substring sb blen) then 0 else 1
return (min (l1 + 1) (min (l2 + 1) (l3 + d))) }
levdist_cont sa sb -1 -1 (fun x -> x)
Run Code Online (Sandbox Code Playgroud)
如果你想在一组递归调用上采取最小值,则不能递归地执行此尾.min所有呼叫后都需要进行操作.
您可以转换任何计算,以便通过转换为延续传递样式来使用尾调用.
延续传球风格通常看起来很复杂(对我来说),但我怀疑一旦你习惯它,它是相当简单的.