我有一个DataFrame,在一些分组后创建了一个MultiIndex:
import numpy as np
import pandas as p
from numpy.random import randn
df = p.DataFrame({
'A' : ['a1', 'a1', 'a2', 'a3']
, 'B' : ['b1', 'b2', 'b3', 'b4']
, 'Vals' : randn(4)
}).groupby(['A', 'B']).sum()
df
Output> Vals
Output> A B
Output> a1 b1 -1.632460
Output> b2 0.596027
Output> a2 b3 -0.619130
Output> a3 b4 -0.002009
Run Code Online (Sandbox Code Playgroud)
如何将一个级别添加到MultiIndex,以便将其转换为:
Output> Vals
Output> FirstLevel A B
Output> Foo a1 b1 -1.632460
Output> b2 0.596027
Output> a2 b3 -0.619130
Output> a3 b4 -0.002009
Run Code Online (Sandbox Code Playgroud)
Rut*_*ies 106
您可以先将其添加为普通列,然后将其附加到当前索引,这样:
df['Firstlevel'] = 'Foo'
df.set_index('Firstlevel', append=True, inplace=True)
Run Code Online (Sandbox Code Playgroud)
如果需要,可以更改订单:
df.reorder_levels(['Firstlevel', 'A', 'B'])
Run Code Online (Sandbox Code Playgroud)
结果如下:
Vals
Firstlevel A B
Foo a1 b1 0.871563
b2 0.494001
a2 b3 -0.167811
a3 b4 -1.353409
Run Code Online (Sandbox Code Playgroud)
oka*_*tal 106
使用以下方法在一行中执行此操作的好方法pandas.concat()
:
import pandas as pd
pd.concat([df], keys=['Foo'], names=['Firstlevel'])
Run Code Online (Sandbox Code Playgroud)
这可以推广到许多数据框,请参阅文档.
我认为这是一个更通用的解决方案:
# Convert index to dataframe
old_idx = df.index.to_frame()
# Insert new level at specified location
old_idx.insert(0, 'new_level_name', new_level_values)
# Convert back to MultiIndex
df.index = pandas.MultiIndex.from_frame(old_idx)
Run Code Online (Sandbox Code Playgroud)
与其他答案相比有一些优点:
我从cxrodgers 答案中做了一个小功能,恕我直言,这是最好的解决方案,因为它纯粹在索引上工作,独立于任何数据帧或系列。
我添加了一个修复:该to_frame()
方法将为没有索引级别的索引级别发明新名称。因此,新索引将具有旧索引中不存在的名称。我添加了一些代码来恢复此名称更改。
下面是代码,我自己使用了一段时间,看起来效果很好。如果您发现任何问题或边缘情况,我将非常有必要调整我的答案。
import pandas as pd
def _handle_insert_loc(loc: int, n: int) -> int:
"""
Computes the insert index from the right if loc is negative for a given size of n.
"""
return n + loc + 1 if loc < 0 else loc
def add_index_level(old_index: pd.Index, value: Any, name: str = None, loc: int = 0) -> pd.MultiIndex:
"""
Expand a (multi)index by adding a level to it.
:param old_index: The index to expand
:param name: The name of the new index level
:param value: Scalar or list-like, the values of the new index level
:param loc: Where to insert the level in the index, 0 is at the front, negative values count back from the rear end
:return: A new multi-index with the new level added
"""
loc = _handle_insert_loc(loc, len(old_index.names))
old_index_df = old_index.to_frame()
old_index_df.insert(loc, name, value)
new_index_names = list(old_index.names) # sometimes new index level names are invented when converting to a df,
new_index_names.insert(loc, name) # here the original names are reconstructed
new_index = pd.MultiIndex.from_frame(old_index_df, names=new_index_names)
return new_index
Run Code Online (Sandbox Code Playgroud)
它通过了以下单元测试代码:
import unittest
import numpy as np
import pandas as pd
class TestPandaStuff(unittest.TestCase):
def test_add_index_level(self):
df = pd.DataFrame(data=np.random.normal(size=(6, 3)))
i1 = add_index_level(df.index, "foo")
# it does not invent new index names where there are missing
self.assertEqual([None, None], i1.names)
# the new level values are added
self.assertTrue(np.all(i1.get_level_values(0) == "foo"))
self.assertTrue(np.all(i1.get_level_values(1) == df.index))
# it does not invent new index names where there are missing
i2 = add_index_level(i1, ["x", "y"]*3, name="xy", loc=2)
i3 = add_index_level(i2, ["a", "b", "c"]*2, name="abc", loc=-1)
self.assertEqual([None, None, "xy", "abc"], i3.names)
# the new level values are added
self.assertTrue(np.all(i3.get_level_values(0) == "foo"))
self.assertTrue(np.all(i3.get_level_values(1) == df.index))
self.assertTrue(np.all(i3.get_level_values(2) == ["x", "y"]*3))
self.assertTrue(np.all(i3.get_level_values(3) == ["a", "b", "c"]*2))
# df.index = i3
# print()
# print(df)
Run Code Online (Sandbox Code Playgroud)
另一个答案使用from_tuples()
. 这概括了之前的答案。
key = "Foo"
name = "First"
# If df.index.nlevels > 1:
df.index = pd.MultiIndex.from_tuples(((key, *item) for item in df.index),
names=[name]+df.index.names)
# If df.index.nlevels == 1:
# df.index = pd.MultiIndex.from_tuples(((key, item) for item in df.index),
# names=[name]+df.index.names)
Run Code Online (Sandbox Code Playgroud)
我喜欢这种方法,因为
将以上内容包装在函数中可以更轻松地在行索引和列索引之间以及单级索引和多级索引之间切换:
def prepend_index_level(index, key, name=None):
names = index.names
if index.nlevels==1:
# Sequence of tuples
index = ((item,) for item in index)
tuples_gen = ((key,)+item for item in index)
return pd.MultiIndex.from_tuples(tuples_gen, names=[name]+names)
df.index = prepend_index_level(df.index, key="Foo", name="First")
df.columns = prepend_index_level(df.columns, key="Bar", name="Top")
# Top Bar
# Vals
# First A B
# Foo a1 b1 -0.446066
# b2 -0.248027
# a2 b3 0.522357
# a3 b4 0.404048
Run Code Online (Sandbox Code Playgroud)
最后,可以通过在任何索引级别插入键来进一步概括上述内容:
def insert_index_level(index, key, name=None, level=0):
def insert_(pos, seq, value):
seq = list(seq)
seq.insert(pos, value)
return tuple(seq)
names = insert_(level, index.names, name)
if index.nlevels==1:
# Sequence of tuples.
index = ((item,) for item in index)
tuples_gen = (insert_(level, item, key) for item in index)
return pd.MultiIndex.from_tuples(tuples_gen, names=names)
df.index = insert_index_level(df.index, key="Foo", name="Last", level=2)
df.columns = insert_index_level(df.columns, key="Bar", name="Top", level=0)
# Top Bar
# Vals
# A B Last
# a1 b1 Foo -0.595949
# b2 Foo -1.621233
# a2 b3 Foo -0.748917
# a3 b4 Foo 2.147814
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
48422 次 |
最近记录: |