如何获取pandas DataFrame的最后N行?

big*_*bug 149 python dataframe pandas

我有熊猫数据帧df1df2(DF1是vanila数据帧,DF2由"STK_ID"和"RPT_Date"索引):

>>> df1
    STK_ID  RPT_Date  TClose   sales  discount
0   000568  20060331    3.69   5.975       NaN
1   000568  20060630    9.14  10.143       NaN
2   000568  20060930    9.49  13.854       NaN
3   000568  20061231   15.84  19.262       NaN
4   000568  20070331   17.00   6.803       NaN
5   000568  20070630   26.31  12.940       NaN
6   000568  20070930   39.12  19.977       NaN
7   000568  20071231   45.94  29.269       NaN
8   000568  20080331   38.75  12.668       NaN
9   000568  20080630   30.09  21.102       NaN
10  000568  20080930   26.00  30.769       NaN

>>> df2
                 TClose   sales  discount  net_sales    cogs
STK_ID RPT_Date                                             
000568 20060331    3.69   5.975       NaN      5.975   2.591
       20060630    9.14  10.143       NaN     10.143   4.363
       20060930    9.49  13.854       NaN     13.854   5.901
       20061231   15.84  19.262       NaN     19.262   8.407
       20070331   17.00   6.803       NaN      6.803   2.815
       20070630   26.31  12.940       NaN     12.940   5.418
       20070930   39.12  19.977       NaN     19.977   8.452
       20071231   45.94  29.269       NaN     29.269  12.606
       20080331   38.75  12.668       NaN     12.668   3.958
       20080630   30.09  21.102       NaN     21.102   7.431
Run Code Online (Sandbox Code Playgroud)

我可以通过以下方式获得最后3行df2:

>>> df2.ix[-3:]
                 TClose   sales  discount  net_sales    cogs
STK_ID RPT_Date                                             
000568 20071231   45.94  29.269       NaN     29.269  12.606
       20080331   38.75  12.668       NaN     12.668   3.958
       20080630   30.09  21.102       NaN     21.102   7.431
Run Code Online (Sandbox Code Playgroud)

同时df1.ix[-3:]给出所有行:

>>> df1.ix[-3:]
    STK_ID  RPT_Date  TClose   sales  discount
0   000568  20060331    3.69   5.975       NaN
1   000568  20060630    9.14  10.143       NaN
2   000568  20060930    9.49  13.854       NaN
3   000568  20061231   15.84  19.262       NaN
4   000568  20070331   17.00   6.803       NaN
5   000568  20070630   26.31  12.940       NaN
6   000568  20070930   39.12  19.977       NaN
7   000568  20071231   45.94  29.269       NaN
8   000568  20080331   38.75  12.668       NaN
9   000568  20080630   30.09  21.102       NaN
10  000568  20080930   26.00  30.769       NaN
Run Code Online (Sandbox Code Playgroud)

为什么?如何获取最后3行df1(没有索引的数据帧)?熊猫0.10.1

Wes*_*ney 338

别忘了DataFrame.tail!例如df1.tail(10)

  • 我确实...我确实忘记了:o (6认同)

And*_*den 62

这是因为使用整数索引(通过-3而不是位置ix选择标签,这是设计:请参阅pandas中的整数索引"gotchas"*).

*在较新版本的pandas中,喜欢使用loc或iloc来消除ix作为位置或标签的歧义:

df.iloc[-3:]
Run Code Online (Sandbox Code Playgroud)

文档.

正如韦斯所指出的,在这种特殊情况下你应该只使用尾巴!


cs9*_*s95 7

如何获取熊猫DataFrame的最后N行?

如果您按位置进行切片,__getitem__(即使用进行切片[])效果很好,并且是我针对该问题发现的最简洁的解决方案。

pd.__version__
# '0.24.2'

df = pd.DataFrame({'A': list('aaabbbbc'), 'B': np.arange(1, 9)})
df

   A  B
0  a  1
1  a  2
2  a  3
3  b  4
4  b  5
5  b  6
6  b  7
7  c  8
Run Code Online (Sandbox Code Playgroud)

df[-3:]

   A  B
5  b  6
6  b  7
7  c  8
Run Code Online (Sandbox Code Playgroud)

例如,这与调用相同df.iloc[-3:]iloc内部委托__getitem__)。


顺便说一句,如果要查找每个组的最后N行,请使用groupbyGroupBy.tail

df.groupby('A').tail(2)

   A  B
1  a  2
2  a  3
5  b  6
6  b  7
7  c  8
Run Code Online (Sandbox Code Playgroud)