mon*_*kut 19 python binning pandas
我有一个数据框,想要按一系列值过滤或分组,然后获取每个bin中的值计数.
目前,我这样做:
x = 5
y = 17
z = 33
filter_values = [x, y, z]
filtered_a = df[df.filtercol <= x]
a_count = filtered_a.filtercol.count()
filtered_b = df[df.filtercol > x]
filtered_b = filtered_b[filtered_b <= y]
b_count = filtered_b.filtercol.count()
filtered_c = df[df.filtercol > y]
c_count = filtered_c.filtercol.count()
Run Code Online (Sandbox Code Playgroud)
但有没有更简洁的方法来完成同样的事情?
unu*_*tbu 35
也许你正在寻找pandas.cut:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.arange(50), columns=['filtercol'])
filter_values = [0, 5, 17, 33]
out = pd.cut(df.filtercol, bins=filter_values)
counts = pd.value_counts(out)
# counts is a Series
print(counts)
Run Code Online (Sandbox Code Playgroud)
产量
(17, 33] 16
(5, 17] 12
(0, 5] 5
Run Code Online (Sandbox Code Playgroud)
要重新排序结果,以便按顺序显示bin范围,您可以使用
counts.sort_index()
Run Code Online (Sandbox Code Playgroud)
产量
(0, 5] 5
(5, 17] 12
(17, 33] 16
Run Code Online (Sandbox Code Playgroud)
另请参阅离散化和量化.
| 归档时间: |
|
| 查看次数: |
22472 次 |
| 最近记录: |