nki*_*int 27 opencv image-processing
我正在着名的冈萨雷斯"数字图像处理"研究图像处理,并谈论图像恢复,很多例子都是用计算机生成的噪声(高斯,盐和胡椒等)完成的.在MATLAB中有一些内置函数可以做到这一点.那么OpenCV呢?
sie*_*hie 31
据我所知,没有像Matlab那样方便的内置函数.但只需几行代码就可以自己创建这些图像.
例如加性高斯噪声:
Mat gaussian_noise = img.clone();
randn(gaussian_noise,128,30);
Run Code Online (Sandbox Code Playgroud)
盐和胡椒噪音:
Mat saltpepper_noise = Mat::zeros(img.rows, img.cols,CV_8U);
randu(saltpepper_noise,0,255);
Mat black = saltpepper_noise < 30;
Mat white = saltpepper_noise > 225;
Mat saltpepper_img = img.clone();
saltpepper_img.setTo(255,white);
saltpepper_img.setTo(0,black);
Run Code Online (Sandbox Code Playgroud)
小智 11
简单的功能是为图像添加高斯,椒盐斑点和泊松噪声
Parameters
----------
image : ndarray
Input image data. Will be converted to float.
mode : str
One of the following strings, selecting the type of noise to add:
'gauss' Gaussian-distributed additive noise.
'poisson' Poisson-distributed noise generated from the data.
's&p' Replaces random pixels with 0 or 1.
'speckle' Multiplicative noise using out = image + n*image,where
n,is uniform noise with specified mean & variance.
import numpy as np
import os
import cv2
def noisy(noise_typ,image):
if noise_typ == "gauss":
row,col,ch= image.shape
mean = 0
#var = 0.1
#sigma = var**0.5
gauss = np.random.normal(mean,1,(row,col,ch))
gauss = gauss.reshape(row,col,ch)
noisy = image + gauss
return noisy
elif noise_typ == "s&p":
row,col,ch = image.shape
s_vs_p = 0.5
amount = 0.004
out = image
# Salt mode
num_salt = np.ceil(amount * image.size * s_vs_p)
coords = [np.random.randint(0, i - 1, int(num_salt))
for i in image.shape]
out[coords] = 1
# Pepper mode
num_pepper = np.ceil(amount* image.size * (1. - s_vs_p))
coords = [np.random.randint(0, i - 1, int(num_pepper))
for i in image.shape]
out[coords] = 0
return out
elif noise_typ == "poisson":
vals = len(np.unique(image))
vals = 2 ** np.ceil(np.log2(vals))
noisy = np.random.poisson(image * vals) / float(vals)
return noisy
elif noise_typ =="speckle":
row,col,ch = image.shape
gauss = np.random.randn(row,col,ch)
gauss = gauss.reshape(row,col,ch)
noisy = image + image * gauss
return noisy
Run Code Online (Sandbox Code Playgroud)
使用NumPy矩阵运算可以以非常简单的方式添加"Salt&Pepper"噪声.
def add_salt_and_pepper(gb, prob):
'''Adds "Salt & Pepper" noise to an image.
gb: should be one-channel image with pixels in [0, 1] range
prob: probability (threshold) that controls level of noise'''
rnd = np.random.rand(gb.shape[0], gb.shape[1])
noisy = gb.copy()
noisy[rnd < prob] = 0
noisy[rnd > 1 - prob] = 1
return noisy
Run Code Online (Sandbox Code Playgroud)
# Adding noise to the image
import cv2
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
img = cv2.imread('./fruit.png',0)
im = np.zeros(img.shape, np.uint8) # do not use original image it overwrites the image
mean = 0
sigma = 10
cv2.randn(im,mean,sigma) # create the random distribution
Fruit_Noise = cv2.add(img, im) # add the noise to the original image
plt.imshow(Fruit_Noise, cmap='gray')
Run Code Online (Sandbox Code Playgroud)
可以改变均值和西格玛的值以引起噪声的特定变化,例如高斯噪声或胡椒盐噪声等。您可以根据需要使用 randn 或 randu。看看文档:https : //docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#cv2.randu
有功能random_noise()从scikit图像包。它有几个内置噪声图案,例如gaussian,s&p(对于椒盐噪声),possion和speckle。
下面我显示了如何使用此方法的示例
from PIL import Image
import numpy as np
from skimage.util import random_noise
im = Image.open("test.jpg")
# convert PIL Image to ndarray
im_arr = np.asarray(im)
# random_noise() method will convert image in [0, 255] to [0, 1.0],
# inherently it use np.random.normal() to create normal distribution
# and adds the generated noised back to image
noise_img = random_noise(im_arr, mode='gaussian', var=0.05**2)
noise_img = (255*noise_img).astype(np.uint8)
img = Image.fromarray(noise_img)
img.show()
Run Code Online (Sandbox Code Playgroud)
还有一个名为imgaug的软件包,专用于以各种方式增强图像。它提供高斯,泊桑和盐和胡椒粉噪声增强剂。这是使用它为图像添加噪点的方法:
from PIL import Image
import numpy as np
from imgaug import augmenters as iaa
def main():
im = Image.open("bg_img.jpg")
im_arr = np.asarray(im)
# gaussian noise
# aug = iaa.AdditiveGaussianNoise(loc=0, scale=0.1*255)
# poisson noise
# aug = iaa.AdditivePoissonNoise(lam=10.0, per_channel=True)
# salt and pepper noise
aug = iaa.SaltAndPepper(p=0.05)
im_arr = aug.augment_image(im_arr)
im = Image.fromarray(im_arr).convert('RGB')
im.show()
if __name__ == "__main__":
main()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
37352 次 |
| 最近记录: |