Sam*_*mal 13 cuda gpu image image-processing matrix
平均滤波器是线性类的窗口滤波器,用于平滑信号(图像).过滤器用作低通过滤器.滤波器背后的基本思想是信号(图像)的任何元素在其邻域中取平均值.
如果我们有一个m x n矩阵并且我们想要在其上应用具有大小的平均滤波器k,那么对于矩阵中p:(i,j)的每个点,该点 的值将是该平方中所有点的平均值.

此图是针对平方内核过滤的大小2,黄色框是要平均的像素,并且所有网格都是相邻像素的平方,像素的新值将是它们的平均值.
问题是这个算法非常慢,特别是在大图像上,所以我考虑使用GPGPU.
现在的问题是,如果有可能,如何在cuda中实施?
sga*_*zvi 21
这是一个令人尴尬的并行图像处理问题的经典案例,可以很容易地映射到CUDA框架.平均滤波器在图像处理域中被称为Box Filter.
最简单的方法是将CUDA纹理用于过滤过程,因为边界条件可以通过纹理轻松处理.
假设您在主机上分配了源和目标指针.程序将是这样的.
核心
texture<unsigned char, cudaTextureType2D> tex8u;
//Box Filter Kernel For Gray scale image with 8bit depth
__global__ void box_filter_kernel_8u_c1(unsigned char* output,const int width, const int height, const size_t pitch, const int fWidth, const int fHeight)
{
int xIndex = blockIdx.x * blockDim.x + threadIdx.x;
int yIndex = blockIdx.y * blockDim.y + threadIdx.y;
const int filter_offset_x = fWidth/2;
const int filter_offset_y = fHeight/2;
float output_value = 0.0f;
//Make sure the current thread is inside the image bounds
if(xIndex<width && yIndex<height)
{
//Sum the window pixels
for(int i= -filter_offset_x; i<=filter_offset_x; i++)
{
for(int j=-filter_offset_y; j<=filter_offset_y; j++)
{
//No need to worry about Out-Of-Range access. tex2D automatically handles it.
output_value += tex2D(tex8u,xIndex + i,yIndex + j);
}
}
//Average the output value
output_value /= (fWidth * fHeight);
//Write the averaged value to the output.
//Transform 2D index to 1D index, because image is actually in linear memory
int index = yIndex * pitch + xIndex;
output[index] = static_cast<unsigned char>(output_value);
}
}
Run Code Online (Sandbox Code Playgroud)
包装功能:
void box_filter_8u_c1(unsigned char* CPUinput, unsigned char* CPUoutput, const int width, const int height, const int widthStep, const int filterWidth, const int filterHeight)
{
/*
* 2D memory is allocated as strided linear memory on GPU.
* The terminologies "Pitch", "WidthStep", and "Stride" are exactly the same thing.
* It is the size of a row in bytes.
* It is not necessary that width = widthStep.
* Total bytes occupied by the image = widthStep x height.
*/
//Declare GPU pointer
unsigned char *GPU_input, *GPU_output;
//Allocate 2D memory on GPU. Also known as Pitch Linear Memory
size_t gpu_image_pitch = 0;
cudaMallocPitch<unsigned char>(&GPU_input,&gpu_image_pitch,width,height);
cudaMallocPitch<unsigned char>(&GPU_output,&gpu_image_pitch,width,height);
//Copy data from host to device.
cudaMemcpy2D(GPU_input,gpu_image_pitch,CPUinput,widthStep,width,height,cudaMemcpyHostToDevice);
//Bind the image to the texture. Now the kernel will read the input image through the texture cache.
//Use tex2D function to read the image
cudaBindTexture2D(NULL,tex8u,GPU_input,width,height,gpu_image_pitch);
/*
* Set the behavior of tex2D for out-of-range image reads.
* cudaAddressModeBorder = Read Zero
* cudaAddressModeClamp = Read the nearest border pixel
* We can skip this step. The default mode is Clamp.
*/
tex8u.addressMode[0] = tex8u.addressMode[1] = cudaAddressModeBorder;
/*
* Specify a block size. 256 threads per block are sufficient.
* It can be increased, but keep in mind the limitations of the GPU.
* Older GPUs allow maximum 512 threads per block.
* Current GPUs allow maximum 1024 threads per block
*/
dim3 block_size(16,16);
/*
* Specify the grid size for the GPU.
* Make it generalized, so that the size of grid changes according to the input image size
*/
dim3 grid_size;
grid_size.x = (width + block_size.x - 1)/block_size.x; /*< Greater than or equal to image width */
grid_size.y = (height + block_size.y - 1)/block_size.y; /*< Greater than or equal to image height */
//Launch the kernel
box_filter_kernel_8u_c1<<<grid_size,block_size>>>(GPU_output,width,height,gpu_image_pitch,filterWidth,filterHeight);
//Copy the results back to CPU
cudaMemcpy2D(CPUoutput,widthStep,GPU_output,gpu_image_pitch,width,height,cudaMemcpyDeviceToHost);
//Release the texture
cudaUnbindTexture(tex8u);
//Free GPU memory
cudaFree(GPU_input);
cudaFree(GPU_output);
}
Run Code Online (Sandbox Code Playgroud)
好消息是您不必自己实现过滤器.CUDA工具包附带了由NVIDIA制作的名为NVIDIA Performance Primitives又名NPP的免费信号和图像处理库.NPP利用支持CUDA的GPU加速处理.平均滤波器已在NPP中实现.当前版本的NPP(5.0)支持8位,1通道和4通道图像.功能是:
nppiFilterBox_8u_C1R 对于1通道图像.nppiFilterBox_8u_C4R 用于4通道图像.一些基本的想法/步骤:
您应该能够通过2D内存和多维内核调用轻松扩展此功能。