Cuda Image平均滤镜

Sam*_*mal 13 cuda gpu image image-processing matrix

平均滤波器是线性类的窗口滤波器,用于平滑信号(图像).过滤器用作低通过滤器.滤波器背后的基本思想是信号(图像)的任何元素在其邻域中取平均值.


如果我们有一个m x n矩阵并且我们想要在其上应用具有大小的平均滤波器k,那么对于矩阵中p:(i,j)的每个点,该点 的值将是该平方中所有点的平均值.

方核

此图是针对平方内核过滤的大小2,黄色框是要平均的像素,并且所有网格都是相邻像素的平方,像素的新值将是它们的平均值.

问题是这个算法非常慢,特别是在大图像上,所以我考虑使用GPGPU.

现在的问题是,如果有可能,如何在cuda中实施?

sga*_*zvi 21

这是一个令人尴尬的并行图像处理问题的经典案例,可以很容易地映射到CUDA框架.平均滤波器在图像处理域中被称为Box Filter.

最简单的方法是将CUDA纹理用于过滤过程,因为边界条件可以通过纹理轻松处理.

假设您在主机上分配了源和目标指针.程序将是这样的.

  1. 分配足够大的内存以将源图像和目标图像保存在设备上.
  2. 将源映像从主机复制到设备.
  3. 将源图像设备指针绑定到纹理.
  4. 指定适当的块大小和足够大的网格以覆盖图像的每个像素.
  5. 使用指定的网格和块大小启动过滤内核.
  6. 将结果复制回主机.
  7. 解开纹理
  8. 免费设备指针.

箱式滤波器的示例实现

核心

texture<unsigned char, cudaTextureType2D> tex8u;

//Box Filter Kernel For Gray scale image with 8bit depth
__global__ void box_filter_kernel_8u_c1(unsigned char* output,const int width, const int height, const size_t pitch, const int fWidth, const int fHeight)
{
    int xIndex = blockIdx.x * blockDim.x + threadIdx.x;
    int yIndex = blockIdx.y * blockDim.y + threadIdx.y;

    const int filter_offset_x = fWidth/2;
    const int filter_offset_y = fHeight/2;

    float output_value = 0.0f;

    //Make sure the current thread is inside the image bounds
    if(xIndex<width && yIndex<height)
    {
        //Sum the window pixels
        for(int i= -filter_offset_x; i<=filter_offset_x; i++)
        {
            for(int j=-filter_offset_y; j<=filter_offset_y; j++)
            {
                //No need to worry about Out-Of-Range access. tex2D automatically handles it.
                output_value += tex2D(tex8u,xIndex + i,yIndex + j);
            }
        }

        //Average the output value
        output_value /= (fWidth * fHeight);

        //Write the averaged value to the output.
        //Transform 2D index to 1D index, because image is actually in linear memory
        int index = yIndex * pitch + xIndex;

        output[index] = static_cast<unsigned char>(output_value);
    }
}
Run Code Online (Sandbox Code Playgroud)

包装功能:

void box_filter_8u_c1(unsigned char* CPUinput, unsigned char* CPUoutput, const int width, const int height, const int widthStep, const int filterWidth, const int filterHeight)
{

    /*
     * 2D memory is allocated as strided linear memory on GPU.
     * The terminologies "Pitch", "WidthStep", and "Stride" are exactly the same thing.
     * It is the size of a row in bytes.
     * It is not necessary that width = widthStep.
     * Total bytes occupied by the image = widthStep x height.
     */

    //Declare GPU pointer
    unsigned char *GPU_input, *GPU_output;

    //Allocate 2D memory on GPU. Also known as Pitch Linear Memory
    size_t gpu_image_pitch = 0;
    cudaMallocPitch<unsigned char>(&GPU_input,&gpu_image_pitch,width,height);
    cudaMallocPitch<unsigned char>(&GPU_output,&gpu_image_pitch,width,height);

    //Copy data from host to device.
    cudaMemcpy2D(GPU_input,gpu_image_pitch,CPUinput,widthStep,width,height,cudaMemcpyHostToDevice);

    //Bind the image to the texture. Now the kernel will read the input image through the texture cache.
    //Use tex2D function to read the image
    cudaBindTexture2D(NULL,tex8u,GPU_input,width,height,gpu_image_pitch);

    /*
     * Set the behavior of tex2D for out-of-range image reads.
     * cudaAddressModeBorder = Read Zero
     * cudaAddressModeClamp  = Read the nearest border pixel
     * We can skip this step. The default mode is Clamp.
     */
    tex8u.addressMode[0] = tex8u.addressMode[1] = cudaAddressModeBorder;

    /*
     * Specify a block size. 256 threads per block are sufficient.
     * It can be increased, but keep in mind the limitations of the GPU.
     * Older GPUs allow maximum 512 threads per block.
     * Current GPUs allow maximum 1024 threads per block
     */

    dim3 block_size(16,16);

    /*
     * Specify the grid size for the GPU.
     * Make it generalized, so that the size of grid changes according to the input image size
     */

    dim3 grid_size;
    grid_size.x = (width + block_size.x - 1)/block_size.x;  /*< Greater than or equal to image width */
    grid_size.y = (height + block_size.y - 1)/block_size.y; /*< Greater than or equal to image height */

    //Launch the kernel
    box_filter_kernel_8u_c1<<<grid_size,block_size>>>(GPU_output,width,height,gpu_image_pitch,filterWidth,filterHeight);

    //Copy the results back to CPU
    cudaMemcpy2D(CPUoutput,widthStep,GPU_output,gpu_image_pitch,width,height,cudaMemcpyDeviceToHost);

    //Release the texture
    cudaUnbindTexture(tex8u);

    //Free GPU memory
    cudaFree(GPU_input);
    cudaFree(GPU_output);
}
Run Code Online (Sandbox Code Playgroud)

好消息是您不必自己实现过滤器.CUDA工具包附带了由NVIDIA制作的名为NVIDIA Performance Primitives又名NPP的免费信号和图像处理库.NPP利用支持CUDA的GPU加速处理.平均滤波器已在NPP中实现.当前版本的NPP(5.0)支持8位,1通道和4通道图像.功能是:

  • nppiFilterBox_8u_C1R 对于1通道图像.
  • nppiFilterBox_8u_C4R 用于4通道图像.

  • 我强烈建议修改sobelFilter SDK示例以进行3x3图像平均,而不是循环纹理提取.sobelFilter示例使用共享内存将像素块放入GPU中以便快速访问. (3认同)

Mic*_*ael 5

一些基本的想法/步骤:

  1. 将图像数据从CPU复制到GPU
  2. 调用内核为每行(水平)建立平均值并将其存储在共享内存中。
  3. 调用内核为每列(垂直)建立平均值并将其存储在全局内存中。
  4. 将数据复制回CPU内存。

您应该能够通过2D内存和多维内核调用轻松扩展此功能。