我有两个数据帧,第一个是表单(注意日期是datetime对象):
df = DataFrame('key': [0,1,2,3,4,5],
'date': [date0,date1, date2, date3, date4, date5],
'value': [0,10,20,30,40,50])
Run Code Online (Sandbox Code Playgroud)
还有第二种形式:
df2 = DataFrame('key': [0,1,2,3,4,5],
'valid_from': [date0, date0, date0, date3, date3, date3],
'valid_to': [date2, date2, date2, date5, date5, date5],
'value': [0, 100, 200, 300, 400, 500])
Run Code Online (Sandbox Code Playgroud)
我正在尝试有效地加入密钥匹配的位置,日期介于valid_from和valid_to之间.我想出的是以下内容:
def map_keys(df2, key, date):
value = df2[df2['key'] == key &
df2['valid_from'] <= date &
df2['valid_to'] >= date]['value'].values[0]
return value
keys = df['key'].values
dates = df['date'].values
keys_dates = zip(keys, dates)
values = []
for key_date in keys_dates:
value = map_keys(df2, key_date[0], key_date[1])
values.append(value)
df['joined_value'] = values
Run Code Online (Sandbox Code Playgroud)
虽然这似乎做了这项工作,但它并不是一种特别优雅的解决方案.我想知道是否有人对这样的加入有更好的想法.
谢谢你的帮助 - 非常感谢.
Gar*_*ett 16
目前,您可以通过内置pandas.merge()和布尔索引在几个步骤中完成此操作.
merged = df.merge(df2, on='key')
valid = (merged.date >= merged.valid_from) & \
(merged.date <= merged.valid_to)
df['joined_value'] = merged[valid].value_y
Run Code Online (Sandbox Code Playgroud)
(注意:在合并之后访问value列,因为它与同名的列冲突,默认的合并冲突后缀分别用于左右帧.)df2value_ydf_x, _y
这是一个示例,使用不同的设置来显示如何处理无效日期.
n = 8
dates = pd.date_range('1/1/2013', freq='D', periods=n)
df = DataFrame({'key': np.arange(n),
'date': dates,
'value': np.arange(n) * 10})
df2 = DataFrame({'key': np.arange(n),
'valid_from': dates[[1,1,1,1,5,5,5,5]],
'valid_to': dates[[4,4,4,4,6,6,6,6]],
'value': np.arange(n) * 100})
Run Code Online (Sandbox Code Playgroud)
输入df2:
key valid_from valid_to value
0 0 2013-01-02 00:00:00 2013-01-05 00:00:00 0
1 1 2013-01-02 00:00:00 2013-01-05 00:00:00 100
2 2 2013-01-02 00:00:00 2013-01-05 00:00:00 200
3 3 2013-01-02 00:00:00 2013-01-05 00:00:00 300
4 4 2013-01-06 00:00:00 2013-01-07 00:00:00 400
5 5 2013-01-06 00:00:00 2013-01-07 00:00:00 500
6 6 2013-01-06 00:00:00 2013-01-07 00:00:00 600
7 7 2013-01-06 00:00:00 2013-01-07 00:00:00 700
Run Code Online (Sandbox Code Playgroud)
中间框架merged:
date key value_x valid_from valid_to value_y
0 2013-01-01 00:00:00 0 0 2013-01-02 00:00:00 2013-01-05 00:00:00 0
1 2013-01-02 00:00:00 1 10 2013-01-02 00:00:00 2013-01-05 00:00:00 100
2 2013-01-03 00:00:00 2 20 2013-01-02 00:00:00 2013-01-05 00:00:00 200
3 2013-01-04 00:00:00 3 30 2013-01-02 00:00:00 2013-01-05 00:00:00 300
4 2013-01-05 00:00:00 4 40 2013-01-06 00:00:00 2013-01-07 00:00:00 400
5 2013-01-06 00:00:00 5 50 2013-01-06 00:00:00 2013-01-07 00:00:00 500
6 2013-01-07 00:00:00 6 60 2013-01-06 00:00:00 2013-01-07 00:00:00 600
7 2013-01-08 00:00:00 7 70 2013-01-06 00:00:00 2013-01-07 00:00:00 700
Run Code Online (Sandbox Code Playgroud)
df添加列后的最终值joined_value:
date key value joined_value
0 2013-01-01 00:00:00 0 0 NaN
1 2013-01-02 00:00:00 1 10 100
2 2013-01-03 00:00:00 2 20 200
3 2013-01-04 00:00:00 3 30 300
4 2013-01-05 00:00:00 4 40 NaN
5 2013-01-06 00:00:00 5 50 500
6 2013-01-07 00:00:00 6 60 600
7 2013-01-08 00:00:00 7 70 NaN
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
5700 次 |
| 最近记录: |