use*_*201 8 python opencv image-processing descriptor
我试图使用opencv与python.我在opencv 2.4的C++版本中编写了一个描述符(SIFT,SURF或ORB)匹配代码.我想用python将此代码转换为opencv.我找到了一些关于如何在c ++中使用opencv函数的文档,但是python中的许多opencv函数我都找不到如何使用它们.这是我的python代码,我目前的问题是我不知道如何在python中使用opencv c ++的"drawMatches".我找到了cv2.DRAW_MATCHES_FLAGS_DEFAULT,但我不知道如何使用它.这是我使用ORB描述符进行匹配的python代码:
im1 = cv2.imread(r'C:\boldt.jpg')
im2 = cv2.cvtColor(im1, cv2.COLOR_BGR2GRAY)
im3 = cv2.imread(r'C:\boldt_resize50.jpg')
im4 = cv2.cvtColor(im3, cv2.COLOR_BGR2GRAY)
orbDetector2 = cv2.FeatureDetector_create("ORB")
orbDescriptorExtractor2 = cv2.DescriptorExtractor_create("ORB")
orbDetector4 = cv2.FeatureDetector_create("ORB")
orbDescriptorExtractor4 = cv2.DescriptorExtractor_create("ORB")
keypoints2 = orbDetector2.detect(im2)
(keypoints2, descriptors2) = orbDescriptorExtractor2.compute(im2,keypoints2)
keypoints4 = orbDetector4.detect(im4)
(keypoints4, descriptors4) = orbDescriptorExtractor4.compute(im4,keypoints4)
matcher = cv2.DescriptorMatcher_create('BruteForce-Hamming')
raw_matches = matcher.match(descriptors2, descriptors4)
img_matches = cv2.DRAW_MATCHES_FLAGS_DEFAULT(im2, keypoints2, im4, keypoints4, raw_matches)
cv2.namedWindow("Match")
cv2.imshow( "Match", img_matches);
Run Code Online (Sandbox Code Playgroud)
行"img_matches = cv2.DRAW_MATCHES_FLAGS_DEFAULT(im2,keypoints2,im4,keypoints4,raw_matches)"的错误消息
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'long' object is not callable
Run Code Online (Sandbox Code Playgroud)
我花了很多时间搜索文档和使用python的opencv函数的例子.但是,我非常沮丧,因为在python中使用opencv函数的信息非常少.如果有人能教我在哪里可以找到如何在python中使用opencv模块的每个函数的文档,那将是非常有帮助的.感谢您的时间和帮助.
wal*_*l-e 14
您可以在Python中可视化功能匹配,如下所示.注意使用scipy库.
# matching features of two images
import cv2
import sys
import scipy as sp
if len(sys.argv) < 3:
print 'usage: %s img1 img2' % sys.argv[0]
sys.exit(1)
img1_path = sys.argv[1]
img2_path = sys.argv[2]
img1 = cv2.imread(img1_path, cv2.CV_LOAD_IMAGE_GRAYSCALE)
img2 = cv2.imread(img2_path, cv2.CV_LOAD_IMAGE_GRAYSCALE)
detector = cv2.FeatureDetector_create("SURF")
descriptor = cv2.DescriptorExtractor_create("BRIEF")
matcher = cv2.DescriptorMatcher_create("BruteForce-Hamming")
# detect keypoints
kp1 = detector.detect(img1)
kp2 = detector.detect(img2)
print '#keypoints in image1: %d, image2: %d' % (len(kp1), len(kp2))
# descriptors
k1, d1 = descriptor.compute(img1, kp1)
k2, d2 = descriptor.compute(img2, kp2)
print '#keypoints in image1: %d, image2: %d' % (len(d1), len(d2))
# match the keypoints
matches = matcher.match(d1, d2)
# visualize the matches
print '#matches:', len(matches)
dist = [m.distance for m in matches]
print 'distance: min: %.3f' % min(dist)
print 'distance: mean: %.3f' % (sum(dist) / len(dist))
print 'distance: max: %.3f' % max(dist)
# threshold: half the mean
thres_dist = (sum(dist) / len(dist)) * 0.5
# keep only the reasonable matches
sel_matches = [m for m in matches if m.distance < thres_dist]
print '#selected matches:', len(sel_matches)
# #####################################
# visualization of the matches
h1, w1 = img1.shape[:2]
h2, w2 = img2.shape[:2]
view = sp.zeros((max(h1, h2), w1 + w2, 3), sp.uint8)
view[:h1, :w1, :] = img1
view[:h2, w1:, :] = img2
view[:, :, 1] = view[:, :, 0]
view[:, :, 2] = view[:, :, 0]
for m in sel_matches:
# draw the keypoints
# print m.queryIdx, m.trainIdx, m.distance
color = tuple([sp.random.randint(0, 255) for _ in xrange(3)])
cv2.line(view, (int(k1[m.queryIdx].pt[0]), int(k1[m.queryIdx].pt[1])) , (int(k2[m.trainIdx].pt[0] + w1), int(k2[m.trainIdx].pt[1])), color)
cv2.imshow("view", view)
cv2.waitKey()
Run Code Online (Sandbox Code Playgroud)
ray*_*ica 11
我自己也写了一些东西,只使用OpenCV Python接口,我没有使用scipy. drawMatches是OpenCV 3.0.0的一部分,不是我正在使用的OpenCV 2的一部分.即使我迟到了,这是我自己的实现,模仿drawMatches我的能力.
我提供了自己的图像,其中一个是相机人,另一个是相同的图像,但逆时针旋转了55度.
我写的基本前提是我分配了一个输出RGB图像,其中行数是两个图像的最大值,以适应将两个图像放在输出图像中,而列只是两个列的总和一起.我将每个图像放在相应的位置,然后运行所有匹配关键点的循环.我提取两个图像之间匹配的关键点,然后提取它们(x,y)的坐标.然后,我在每个检测到的位置绘制圆圈,然后绘制一条连接这些圆圈的线.
请记住,第二张图像中检测到的关键点与其自身的坐标系相关.如果要将其放在最终输出图像中,则需要将列坐标偏移第一个图像的列数,以使列坐标相对于输出图像的坐标系统.
无需再费周折:
import numpy as np
import cv2
def drawMatches(img1, kp1, img2, kp2, matches):
"""
My own implementation of cv2.drawMatches as OpenCV 2.4.9
does not have this function available but it's supported in
OpenCV 3.0.0
This function takes in two images with their associated
keypoints, as well as a list of DMatch data structure (matches)
that contains which keypoints matched in which images.
An image will be produced where a montage is shown with
the first image followed by the second image beside it.
Keypoints are delineated with circles, while lines are connected
between matching keypoints.
img1,img2 - Grayscale images
kp1,kp2 - Detected list of keypoints through any of the OpenCV keypoint
detection algorithms
matches - A list of matches of corresponding keypoints through any
OpenCV keypoint matching algorithm
"""
# Create a new output image that concatenates the two images together
# (a.k.a) a montage
rows1 = img1.shape[0]
cols1 = img1.shape[1]
rows2 = img2.shape[0]
cols2 = img2.shape[1]
out = np.zeros((max([rows1,rows2]),cols1+cols2,3), dtype='uint8')
# Place the first image to the left
out[:rows1,:cols1,:] = np.dstack([img1, img1, img1])
# Place the next image to the right of it
out[:rows2,cols1:cols1+cols2,:] = np.dstack([img2, img2, img2])
# For each pair of points we have between both images
# draw circles, then connect a line between them
for mat in matches:
# Get the matching keypoints for each of the images
img1_idx = mat.queryIdx
img2_idx = mat.trainIdx
# x - columns
# y - rows
(x1,y1) = kp1[img1_idx].pt
(x2,y2) = kp2[img2_idx].pt
# Draw a small circle at both co-ordinates
# radius 4
# colour blue
# thickness = 1
cv2.circle(out, (int(x1),int(y1)), 4, (255, 0, 0), 1)
cv2.circle(out, (int(x2)+cols1,int(y2)), 4, (255, 0, 0), 1)
# Draw a line in between the two points
# thickness = 1
# colour blue
cv2.line(out, (int(x1),int(y1)), (int(x2)+cols1,int(y2)), (255, 0, 0), 1)
# Show the image
cv2.imshow('Matched Features', out)
cv2.waitKey(0)
cv2.destroyAllWindows()
Run Code Online (Sandbox Code Playgroud)
为了说明这是有效的,这里是我使用的两个图像:


我使用OpenCV的ORB检测器来检测关键点,并使用归一化的汉明距离作为相似性的距离度量,因为这是二进制描述符.因此:
import numpy as np
import cv2
img1 = cv2.imread('cameraman.png') # Original image
img2 = cv2.imread('cameraman_rot55.png') # Rotated image
# Create ORB detector with 1000 keypoints with a scaling pyramid factor
# of 1.2
orb = cv2.ORB(1000, 1.2)
# Detect keypoints of original image
(kp1,des1) = orb.detectAndCompute(img1, None)
# Detect keypoints of rotated image
(kp2,des2) = orb.detectAndCompute(img2, None)
# Create matcher
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
# Do matching
matches = bf.match(des1,des2)
# Sort the matches based on distance. Least distance
# is better
matches = sorted(matches, key=lambda val: val.distance)
# Show only the top 10 matches
drawMatches(img1, kp1, img2, kp2, matches[:10])
Run Code Online (Sandbox Code Playgroud)
这是我得到的图像:

小智 2
正如错误消息所示,DRAW_MATCHES_FLAGS_DEFAULT 的类型为“long”。它是 cv2 模块定义的常量,而不是函数。不幸的是,您想要的函数“drawMatches”仅存在于 OpenCV 的 C++ 接口中。
| 归档时间: |
|
| 查看次数: |
22391 次 |
| 最近记录: |