Ham*_*jan 60 python primes generator
这不是作业,我只是好奇.
INFINITE是这里的关键词.
我希望在primes()中使用它作为p.我相信这是Haskell中的内置函数.
所以,答案不能像"Just do a Sieve"那样天真.
首先,您不知道将消耗多少连续素数.好吧,假设你可以一次编制100个.您是否会使用相同的Sieve方法以及素数公式的频率?
我更喜欢非并发方法.
感谢您阅读(和写作;))!
tzo*_*zot 71
erat2食谱中的功能可以进一步加快(约20-25%):
import itertools as it
def erat2a( ):
D = { }
yield 2
for q in it.islice(it.count(3), 0, None, 2):
p = D.pop(q, None)
if p is None:
D[q*q] = q
yield q
else:
# old code here:
# x = p + q
# while x in D or not (x&1):
# x += p
# changed into:
x = q + 2*p
while x in D:
x += 2*p
D[x] = p
Run Code Online (Sandbox Code Playgroud)
该not (x&1)检查验证x为奇数.然而,由于这两个 q和p是奇数,通过添加2*p下列步骤一半与测试古怪沿着避免.
如果一个人不介意一点额外的幻想,erat2可以通过以下更改加速35-40%(注意:由于该itertools.compress功能,需要Python 2.7+或Python 3+ ):
import itertools as it
def erat3( ):
D = { 9: 3, 25: 5 }
yield 2
yield 3
yield 5
MASK= 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0,
MODULOS= frozenset( (1, 7, 11, 13, 17, 19, 23, 29) )
for q in it.compress(
it.islice(it.count(7), 0, None, 2),
it.cycle(MASK)):
p = D.pop(q, None)
if p is None:
D[q*q] = q
yield q
else:
x = q + 2*p
while x in D or (x%30) not in MODULOS:
x += 2*p
D[x] = p
Run Code Online (Sandbox Code Playgroud)
该erat3函数利用了这样的事实:所有素数(除了MODULOS2,3,5 除外)模数为30只导致8个数:冻结集中包含的数.因此,在产生最初的三个素数后,我们从7开始,只与候选人一起工作.
候选过滤使用该itertools.compress功能; "神奇"在MASK序列中; MASK有15个元素(每30个数字中有15个奇数,由itertools.islice函数选择),1每个可能的候选者都有一个元素,从7开始.循环按itertools.cycle函数指定重复.
候选过滤的引入需要另一种修改:or (x%30) not in MODULOS检查.该erat2算法处理所有奇数; 既然erat3算法只处理r30候选者,我们需要确保所有人D.keys()只能是这样的假候选者.
在Atom 330 Ubuntu 9.10服务器上,版本2.6.4和3.1.1+:
$ testit
up to 8192
==== python2 erat2 ====
100 loops, best of 3: 18.6 msec per loop
==== python2 erat2a ====
100 loops, best of 3: 14.5 msec per loop
==== python2 erat3 ====
Traceback (most recent call last):
…
AttributeError: 'module' object has no attribute 'compress'
==== python3 erat2 ====
100 loops, best of 3: 19.2 msec per loop
==== python3 erat2a ====
100 loops, best of 3: 14.1 msec per loop
==== python3 erat3 ====
100 loops, best of 3: 11.7 msec per loop
Run Code Online (Sandbox Code Playgroud)
在AMD Geode LX Gentoo家庭服务器上,Python 2.6.5和3.1.2:
$ testit
up to 8192
==== python2 erat2 ====
10 loops, best of 3: 104 msec per loop
==== python2 erat2a ====
10 loops, best of 3: 81 msec per loop
==== python2 erat3 ====
Traceback (most recent call last):
…
AttributeError: 'module' object has no attribute 'compress'
==== python3 erat2 ====
10 loops, best of 3: 116 msec per loop
==== python3 erat2a ====
10 loops, best of 3: 82 msec per loop
==== python3 erat3 ====
10 loops, best of 3: 66 msec per loop
Run Code Online (Sandbox Code Playgroud)
甲primegen.py模块包含erat2,erat2a和erat3功能.以下是测试脚本:
#!/bin/sh
max_num=${1:-8192}
echo up to $max_num
for python_version in python2 python3
do
for function in erat2 erat2a erat3
do
echo "==== $python_version $function ===="
$python_version -O -m timeit -c \
-s "import itertools as it, functools as ft, operator as op, primegen; cmp= ft.partial(op.ge, $max_num)" \
"next(it.dropwhile(cmp, primegen.$function()))"
done
done
Run Code Online (Sandbox Code Playgroud)
Wil*_*ess 67
由于OP要求有效实现,所以这里是David Eppstein/Alex Martelli(在他的回答中看到)对活动状态2002代码的重大改进:不要在字典中记录素数的信息,直到它的正方形被看到候选人.对于产生的n个素数(π(sqrt(n log n)) ~ 2 sqrt(n log n)/ log(n log n)〜,将空间复杂度降低到O(sqrt(n))以下而不是O(n).2 sqrt(n/log n)).因此,时间复杂性也得到改善,即运行得更快.
创建一个"滑动筛"作为每个基本素数的当前倍数的字典(即低于当前生产点的sqrt),以及它们的步长值:
from itertools import count
# ideone.com/aVndFM
def postponed_sieve(): # postponed sieve, by Will Ness
yield 2; yield 3; yield 5; yield 7; # original code David Eppstein,
sieve = {} # Alex Martelli, ActiveState Recipe 2002
ps = postponed_sieve() # a separate base Primes Supply:
p = next(ps) and next(ps) # (3) a Prime to add to dict
q = p*p # (9) its sQuare
for c in count(9,2): # the Candidate
if c in sieve: # c's a multiple of some base prime
s = sieve.pop(c) # i.e. a composite ; or
elif c < q:
yield c # a prime
continue
else: # (c==q): # or the next base prime's square:
s=count(q+2*p,2*p) # (9+6, by 6 : 15,21,27,33,...)
p=next(ps) # (5)
q=p*p # (25)
for m in s: # the next multiple
if m not in sieve: # no duplicates
break
sieve[m] = s # original test entry: ideone.com/WFv4f
Run Code Online (Sandbox Code Playgroud)
(年纪大了,原来这里的代码编辑为包括变化中看到了答案由蒂姆·彼得斯,下同).另见这个相关的讨论.
类似的2-3-5-7基于轮的代码运行速度快〜2.15倍(这非常接近理论上的改进3/2 * 5/4 * 7/6 = 2.1875).
Tim*_*ers 39
对于后人来说,这里是Will Ness为Python 3编写的漂亮算法的重写.需要进行一些更改(迭代器不再有.next()方法,但有一个新的next()内置函数).其他变化是为了好玩(使用new yield from <iterable>替换yield原始中的四个语句.更多是为了可读性(我不是过度使用的粉丝;-) 1个字母的变量名称).
它明显快于原始速度,但不是出于算法原因.加速主要是因为删除原始的add()功能,而是内联.
def psieve():
import itertools
yield from (2, 3, 5, 7)
D = {}
ps = psieve()
next(ps)
p = next(ps)
assert p == 3
psq = p*p
for i in itertools.count(9, 2):
if i in D: # composite
step = D.pop(i)
elif i < psq: # prime
yield i
continue
else: # composite, = p*p
assert i == psq
step = 2*p
p = next(ps)
psq = p*p
i += step
while i in D:
i += step
D[i] = step
Run Code Online (Sandbox Code Playgroud)
这不是我原来的代码,但值得张贴.原文可以在这里找到:http://code.activestate.com/recipes/117119/
def gen_primes():
D = {}
q = 2 # first integer to test for primality.
while True:
if q not in D:
# not marked composite, must be prime
yield q
#first multiple of q not already marked
D[q * q] = [q]
else:
for p in D[q]:
D.setdefault(p + q, []).append(p)
# no longer need D[q], free memory
del D[q]
q += 1
Run Code Online (Sandbox Code Playgroud)
它是一个发电机,所以像其他任何一样使用它.
primes = gen_primes()
for p in primes:
print p
Run Code Online (Sandbox Code Playgroud)
在我的桌面上生成并放入一组100万个素数需要1.62秒.
做一个分段筛,其中段的大小由可用内存或bitset的最大大小决定.
对于每个段,表示某个区间中的数字[n; n + segment_size)作为位集和筛子,所有素数低于上限的平方根.
使用位集比使用散列表或树数据结构使用更少的内存,因为您正在处理密集的数字集.
| 归档时间: |
|
| 查看次数: |
23460 次 |
| 最近记录: |