在C#中加密和解密字符串?

Not*_*Dan 668 .net c# encryption mono cryptography

如何在C#中加密和解密字符串?

Bre*_*ett 410

编辑2013年10月:虽然我已经编辑了这个答案,以解决缺点,请参阅jbtule的答案,以获得更强大,更明智的解决方案.

/sf/answers/725633611/

原答案:

这是一个源自"RijndaelManaged Class"文档MCTS Training Kit的工作示例.

编辑2012年4月:编辑这个答案是为了预先安排IV每个jbtule的建议,如下图所示:

http://msdn.microsoft.com/en-us/library/system.security.cryptography.aesmanaged%28v=vs.95%29.aspx

祝好运!

public class Crypto
{

    //While an app specific salt is not the best practice for
    //password based encryption, it's probably safe enough as long as
    //it is truly uncommon. Also too much work to alter this answer otherwise.
    private static byte[] _salt = __To_Do__("Add a app specific salt here");

    /// <summary>
    /// Encrypt the given string using AES.  The string can be decrypted using 
    /// DecryptStringAES().  The sharedSecret parameters must match.
    /// </summary>
    /// <param name="plainText">The text to encrypt.</param>
    /// <param name="sharedSecret">A password used to generate a key for encryption.</param>
    public static string EncryptStringAES(string plainText, string sharedSecret)
    {
        if (string.IsNullOrEmpty(plainText))
            throw new ArgumentNullException("plainText");
        if (string.IsNullOrEmpty(sharedSecret))
            throw new ArgumentNullException("sharedSecret");

        string outStr = null;                       // Encrypted string to return
        RijndaelManaged aesAlg = null;              // RijndaelManaged object used to encrypt the data.

        try
        {
            // generate the key from the shared secret and the salt
            Rfc2898DeriveBytes key = new Rfc2898DeriveBytes(sharedSecret, _salt);

            // Create a RijndaelManaged object
            aesAlg = new RijndaelManaged();
            aesAlg.Key = key.GetBytes(aesAlg.KeySize / 8);

            // Create a decryptor to perform the stream transform.
            ICryptoTransform encryptor = aesAlg.CreateEncryptor(aesAlg.Key, aesAlg.IV);

            // Create the streams used for encryption.
            using (MemoryStream msEncrypt = new MemoryStream())
            {
                // prepend the IV
                msEncrypt.Write(BitConverter.GetBytes(aesAlg.IV.Length), 0, sizeof(int));
                msEncrypt.Write(aesAlg.IV, 0, aesAlg.IV.Length);
                using (CryptoStream csEncrypt = new CryptoStream(msEncrypt, encryptor, CryptoStreamMode.Write))
                {
                    using (StreamWriter swEncrypt = new StreamWriter(csEncrypt))
                    {
                        //Write all data to the stream.
                        swEncrypt.Write(plainText);
                    }
                }
                outStr = Convert.ToBase64String(msEncrypt.ToArray());
            }
        }
        finally
        {
            // Clear the RijndaelManaged object.
            if (aesAlg != null)
                aesAlg.Clear();
        }

        // Return the encrypted bytes from the memory stream.
        return outStr;
    }

    /// <summary>
    /// Decrypt the given string.  Assumes the string was encrypted using 
    /// EncryptStringAES(), using an identical sharedSecret.
    /// </summary>
    /// <param name="cipherText">The text to decrypt.</param>
    /// <param name="sharedSecret">A password used to generate a key for decryption.</param>
    public static string DecryptStringAES(string cipherText, string sharedSecret)
    {
        if (string.IsNullOrEmpty(cipherText))
            throw new ArgumentNullException("cipherText");
        if (string.IsNullOrEmpty(sharedSecret))
            throw new ArgumentNullException("sharedSecret");

        // Declare the RijndaelManaged object
        // used to decrypt the data.
        RijndaelManaged aesAlg = null;

        // Declare the string used to hold
        // the decrypted text.
        string plaintext = null;

        try
        {
            // generate the key from the shared secret and the salt
            Rfc2898DeriveBytes key = new Rfc2898DeriveBytes(sharedSecret, _salt);

            // Create the streams used for decryption.                
            byte[] bytes = Convert.FromBase64String(cipherText);
            using (MemoryStream msDecrypt = new MemoryStream(bytes))
            {
                // Create a RijndaelManaged object
                // with the specified key and IV.
                aesAlg = new RijndaelManaged();
                aesAlg.Key = key.GetBytes(aesAlg.KeySize / 8);
                // Get the initialization vector from the encrypted stream
                aesAlg.IV = ReadByteArray(msDecrypt);
                // Create a decrytor to perform the stream transform.
                ICryptoTransform decryptor = aesAlg.CreateDecryptor(aesAlg.Key, aesAlg.IV);
                using (CryptoStream csDecrypt = new CryptoStream(msDecrypt, decryptor, CryptoStreamMode.Read))
                {
                    using (StreamReader srDecrypt = new StreamReader(csDecrypt))

                        // Read the decrypted bytes from the decrypting stream
                        // and place them in a string.
                        plaintext = srDecrypt.ReadToEnd();
                }
            }
        }
        finally
        {
            // Clear the RijndaelManaged object.
            if (aesAlg != null)
                aesAlg.Clear();
        }

        return plaintext;
    }

    private static byte[] ReadByteArray(Stream s)
    {
        byte[] rawLength = new byte[sizeof(int)];
        if (s.Read(rawLength, 0, rawLength.Length) != rawLength.Length)
        {
            throw new SystemException("Stream did not contain properly formatted byte array");
        }

        byte[] buffer = new byte[BitConverter.ToInt32(rawLength, 0)];
        if (s.Read(buffer, 0, buffer.Length) != buffer.Length)
        {
            throw new SystemException("Did not read byte array properly");
        }

        return buffer;
    }
}
Run Code Online (Sandbox Code Playgroud)

  • 上面的代码不安全,它打破了最基本的语义安全规则,你不应该使用相同的密钥多次使用相同的IV.每次使用相同的密钥时,它总是给出相同的IV. (18认同)
  • 在密钥派生过程中使用salt不会有害.一个常数不是一个好的盐,就像一个常数不是一个好的IV. (7认同)
  • 关于AES与Rijndael的混淆:AES是Rijndael的一个子集.如果您使用具有128位块的Rijndael以及128位,192位或256位密钥,则使用AES. (5认同)
  • Bret - 嗨thx为你的例子.Maybye认为 - 我遇到了关键问题的问题 - 我使用MD5进行了修改,所以如果有人在功能部分中使用你的例子,请使用它进行密钥规范化(或者你可以使用其他哈希算法:HashAlgorithm hash = new MD5CryptoServiceProvider(); UnicodeEncoding UE = new UnicodeEncoding(); byte [] key = hash.ComputeHash(UE.GetBytes(encrypt_password)); ps:对不起我的英文:) slinti (3认同)
  • 盐增加了一定程度的混淆以防止开裂.建议您阅读下面生成盐的jbtules示例. (3认同)
  • 解密需要 IV 和密钥。随机 IV 提供“语义安全”——防止任何观察流量的人辨别模式。例如,如果每个人的密码都设置为“更改我”,那么即使密钥相同,随机 IV 仍会产生随机密文。 (2认同)

jbt*_*ule 347

对称认证加密字符串的现代例子.

对称加密的一般最佳实践是使用经过身份验证的加密与关联数据(AEAD),但这不是标准.net加密库的一部分.因此,第一个示例使用AES256,然后使用HMAC256,两步加密然后MAC,这需要更多的开销和更多的密钥.

第二个例子使用AES256- GCM的简单实践,使用开源Bouncy Castle(通过nuget).

Both examples have a main function that takes secret message string, key(s) and an optional non-secret payload and return and authenticated encrypted string optionally prepended with the non-secret data. Ideally you would use these with 256bit key(s) randomly generated see NewKey().

Both examples also have a helper methods that use a string password to generate the keys. These helper methods are provided as a convenience to match up with other examples, however they are far less secure because the strength of the password is going to be far weaker than a 256 bit key.

Update: Added byte[] overloads, and only the Gist has the full formatting with 4 spaces indent and api docs due to StackOverflow answer limits.


.NET内置加密(AES)-Then-MAC(HMAC)[Gist]

/*
 * This work (Modern Encryption of a String C#, by James Tuley), 
 * identified by James Tuley, is free of known copyright restrictions.
 * https://gist.github.com/4336842
 * http://creativecommons.org/publicdomain/mark/1.0/ 
 */

using System;
using System.IO;
using System.Security.Cryptography;
using System.Text;

namespace Encryption
{
  public static class AESThenHMAC
  {
    private static readonly RandomNumberGenerator Random = RandomNumberGenerator.Create();

    //Preconfigured Encryption Parameters
    public static readonly int BlockBitSize = 128;
    public static readonly int KeyBitSize = 256;

    //Preconfigured Password Key Derivation Parameters
    public static readonly int SaltBitSize = 64;
    public static readonly int Iterations = 10000;
    public static readonly int MinPasswordLength = 12;

    /// <summary>
    /// Helper that generates a random key on each call.
    /// </summary>
    /// <returns></returns>
    public static byte[] NewKey()
    {
      var key = new byte[KeyBitSize / 8];
      Random.GetBytes(key);
      return key;
    }

    /// <summary>
    /// Simple Encryption (AES) then Authentication (HMAC) for a UTF8 Message.
    /// </summary>
    /// <param name="secretMessage">The secret message.</param>
    /// <param name="cryptKey">The crypt key.</param>
    /// <param name="authKey">The auth key.</param>
    /// <param name="nonSecretPayload">(Optional) Non-Secret Payload.</param>
    /// <returns>
    /// Encrypted Message
    /// </returns>
    /// <exception cref="System.ArgumentException">Secret Message Required!;secretMessage</exception>
    /// <remarks>
    /// Adds overhead of (Optional-Payload + BlockSize(16) + Message-Padded-To-Blocksize +  HMac-Tag(32)) * 1.33 Base64
    /// </remarks>
    public static string SimpleEncrypt(string secretMessage, byte[] cryptKey, byte[] authKey,
                       byte[] nonSecretPayload = null)
    {
      if (string.IsNullOrEmpty(secretMessage))
        throw new ArgumentException("Secret Message Required!", "secretMessage");

      var plainText = Encoding.UTF8.GetBytes(secretMessage);
      var cipherText = SimpleEncrypt(plainText, cryptKey, authKey, nonSecretPayload);
      return Convert.ToBase64String(cipherText);
    }

    /// <summary>
    /// Simple Authentication (HMAC) then Decryption (AES) for a secrets UTF8 Message.
    /// </summary>
    /// <param name="encryptedMessage">The encrypted message.</param>
    /// <param name="cryptKey">The crypt key.</param>
    /// <param name="authKey">The auth key.</param>
    /// <param name="nonSecretPayloadLength">Length of the non secret payload.</param>
    /// <returns>
    /// Decrypted Message
    /// </returns>
    /// <exception cref="System.ArgumentException">Encrypted Message Required!;encryptedMessage</exception>
    public static string SimpleDecrypt(string encryptedMessage, byte[] cryptKey, byte[] authKey,
                       int nonSecretPayloadLength = 0)
    {
      if (string.IsNullOrWhiteSpace(encryptedMessage))
        throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");

      var cipherText = Convert.FromBase64String(encryptedMessage);
      var plainText = SimpleDecrypt(cipherText, cryptKey, authKey, nonSecretPayloadLength);
      return plainText == null ? null : Encoding.UTF8.GetString(plainText);
    }

    /// <summary>
    /// Simple Encryption (AES) then Authentication (HMAC) of a UTF8 message
    /// using Keys derived from a Password (PBKDF2).
    /// </summary>
    /// <param name="secretMessage">The secret message.</param>
    /// <param name="password">The password.</param>
    /// <param name="nonSecretPayload">The non secret payload.</param>
    /// <returns>
    /// Encrypted Message
    /// </returns>
    /// <exception cref="System.ArgumentException">password</exception>
    /// <remarks>
    /// Significantly less secure than using random binary keys.
    /// Adds additional non secret payload for key generation parameters.
    /// </remarks>
    public static string SimpleEncryptWithPassword(string secretMessage, string password,
                             byte[] nonSecretPayload = null)
    {
      if (string.IsNullOrEmpty(secretMessage))
        throw new ArgumentException("Secret Message Required!", "secretMessage");

      var plainText = Encoding.UTF8.GetBytes(secretMessage);
      var cipherText = SimpleEncryptWithPassword(plainText, password, nonSecretPayload);
      return Convert.ToBase64String(cipherText);
    }

    /// <summary>
    /// Simple Authentication (HMAC) and then Descryption (AES) of a UTF8 Message
    /// using keys derived from a password (PBKDF2). 
    /// </summary>
    /// <param name="encryptedMessage">The encrypted message.</param>
    /// <param name="password">The password.</param>
    /// <param name="nonSecretPayloadLength">Length of the non secret payload.</param>
    /// <returns>
    /// Decrypted Message
    /// </returns>
    /// <exception cref="System.ArgumentException">Encrypted Message Required!;encryptedMessage</exception>
    /// <remarks>
    /// Significantly less secure than using random binary keys.
    /// </remarks>
    public static string SimpleDecryptWithPassword(string encryptedMessage, string password,
                             int nonSecretPayloadLength = 0)
    {
      if (string.IsNullOrWhiteSpace(encryptedMessage))
        throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");

      var cipherText = Convert.FromBase64String(encryptedMessage);
      var plainText = SimpleDecryptWithPassword(cipherText, password, nonSecretPayloadLength);
      return plainText == null ? null : Encoding.UTF8.GetString(plainText);
    }

    public static byte[] SimpleEncrypt(byte[] secretMessage, byte[] cryptKey, byte[] authKey, byte[] nonSecretPayload = null)
    {
      //User Error Checks
      if (cryptKey == null || cryptKey.Length != KeyBitSize / 8)
        throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize), "cryptKey");

      if (authKey == null || authKey.Length != KeyBitSize / 8)
        throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize), "authKey");

      if (secretMessage == null || secretMessage.Length < 1)
        throw new ArgumentException("Secret Message Required!", "secretMessage");

      //non-secret payload optional
      nonSecretPayload = nonSecretPayload ?? new byte[] { };

      byte[] cipherText;
      byte[] iv;

      using (var aes = new AesManaged
      {
        KeySize = KeyBitSize,
        BlockSize = BlockBitSize,
        Mode = CipherMode.CBC,
        Padding = PaddingMode.PKCS7
      })
      {

        //Use random IV
        aes.GenerateIV();
        iv = aes.IV;

        using (var encrypter = aes.CreateEncryptor(cryptKey, iv))
        using (var cipherStream = new MemoryStream())
        {
          using (var cryptoStream = new CryptoStream(cipherStream, encrypter, CryptoStreamMode.Write))
          using (var binaryWriter = new BinaryWriter(cryptoStream))
          {
            //Encrypt Data
            binaryWriter.Write(secretMessage);
          }

          cipherText = cipherStream.ToArray();
        }

      }

      //Assemble encrypted message and add authentication
      using (var hmac = new HMACSHA256(authKey))
      using (var encryptedStream = new MemoryStream())
      {
        using (var binaryWriter = new BinaryWriter(encryptedStream))
        {
          //Prepend non-secret payload if any
          binaryWriter.Write(nonSecretPayload);
          //Prepend IV
          binaryWriter.Write(iv);
          //Write Ciphertext
          binaryWriter.Write(cipherText);
          binaryWriter.Flush();

          //Authenticate all data
          var tag = hmac.ComputeHash(encryptedStream.ToArray());
          //Postpend tag
          binaryWriter.Write(tag);
        }
        return encryptedStream.ToArray();
      }

    }

    public static byte[] SimpleDecrypt(byte[] encryptedMessage, byte[] cryptKey, byte[] authKey, int nonSecretPayloadLength = 0)
    {

      //Basic Usage Error Checks
      if (cryptKey == null || cryptKey.Length != KeyBitSize / 8)
        throw new ArgumentException(String.Format("CryptKey needs to be {0} bit!", KeyBitSize), "cryptKey");

      if (authKey == null || authKey.Length != KeyBitSize / 8)
        throw new ArgumentException(String.Format("AuthKey needs to be {0} bit!", KeyBitSize), "authKey");

      if (encryptedMessage == null || encryptedMessage.Length == 0)
        throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");

      using (var hmac = new HMACSHA256(authKey))
      {
        var sentTag = new byte[hmac.HashSize / 8];
        //Calculate Tag
        var calcTag = hmac.ComputeHash(encryptedMessage, 0, encryptedMessage.Length - sentTag.Length);
        var ivLength = (BlockBitSize / 8);

        //if message length is to small just return null
        if (encryptedMessage.Length < sentTag.Length + nonSecretPayloadLength + ivLength)
          return null;

        //Grab Sent Tag
        Array.Copy(encryptedMessage, encryptedMessage.Length - sentTag.Length, sentTag, 0, sentTag.Length);

        //Compare Tag with constant time comparison
        var compare = 0;
        for (var i = 0; i < sentTag.Length; i++)
          compare |= sentTag[i] ^ calcTag[i]; 

        //if message doesn't authenticate return null
        if (compare != 0)
          return null;

        using (var aes = new AesManaged
        {
          KeySize = KeyBitSize,
          BlockSize = BlockBitSize,
          Mode = CipherMode.CBC,
          Padding = PaddingMode.PKCS7
        })
        {

          //Grab IV from message
          var iv = new byte[ivLength];
          Array.Copy(encryptedMessage, nonSecretPayloadLength, iv, 0, iv.Length);

          using (var decrypter = aes.CreateDecryptor(cryptKey, iv))
          using (var plainTextStream = new MemoryStream())
          {
            using (var decrypterStream = new CryptoStream(plainTextStream, decrypter, CryptoStreamMode.Write))
            using (var binaryWriter = new BinaryWriter(decrypterStream))
            {
              //Decrypt Cipher Text from Message
              binaryWriter.Write(
                encryptedMessage,
                nonSecretPayloadLength + iv.Length,
                encryptedMessage.Length - nonSecretPayloadLength - iv.Length - sentTag.Length
              );
            }
            //Return Plain Text
            return plainTextStream.ToArray();
          }
        }
      }
    }

    public static byte[] SimpleEncryptWithPassword(byte[] secretMessage, string password, byte[] nonSecretPayload = null)
    {
      nonSecretPayload = nonSecretPayload ?? new byte[] {};

      //User Error Checks
      if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
        throw new ArgumentException(String.Format("Must have a password of at least {0} characters!", MinPasswordLength), "password");

      if (secretMessage == null || secretMessage.Length ==0)
        throw new ArgumentException("Secret Message Required!", "secretMessage");

      var payload = new byte[((SaltBitSize / 8) * 2) + nonSecretPayload.Length];

      Array.Copy(nonSecretPayload, payload, nonSecretPayload.Length);
      int payloadIndex = nonSecretPayload.Length;

      byte[] cryptKey;
      byte[] authKey;
      //Use Random Salt to prevent pre-generated weak password attacks.
      using (var generator = new Rfc2898DeriveBytes(password, SaltBitSize / 8, Iterations))
      {
        var salt = generator.Salt;

        //Generate Keys
        cryptKey = generator.GetBytes(KeyBitSize / 8);

        //Create Non Secret Payload
        Array.Copy(salt, 0, payload, payloadIndex, salt.Length);
        payloadIndex += salt.Length;
      }

      //Deriving separate key, might be less efficient than using HKDF, 
      //but now compatible with RNEncryptor which had a very similar wireformat and requires less code than HKDF.
      using (var generator = new Rfc2898DeriveBytes(password, SaltBitSize / 8, Iterations))
      {
        var salt = generator.Salt;

        //Generate Keys
        authKey = generator.GetBytes(KeyBitSize / 8);

        //Create Rest of Non Secret Payload
        Array.Copy(salt, 0, payload, payloadIndex, salt.Length);
      }

      return SimpleEncrypt(secretMessage, cryptKey, authKey, payload);
    }

    public static byte[] SimpleDecryptWithPassword(byte[] encryptedMessage, string password, int nonSecretPayloadLength = 0)
    {
      //User Error Checks
      if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
        throw new ArgumentException(String.Format("Must have a password of at least {0} characters!", MinPasswordLength), "password");

      if (encryptedMessage == null || encryptedMessage.Length == 0)
        throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");

      var cryptSalt = new byte[SaltBitSize / 8];
      var authSalt = new byte[SaltBitSize / 8];

      //Grab Salt from Non-Secret Payload
      Array.Copy(encryptedMessage, nonSecretPayloadLength, cryptSalt, 0, cryptSalt.Length);
      Array.Copy(encryptedMessage, nonSecretPayloadLength + cryptSalt.Length, authSalt, 0, authSalt.Length);

      byte[] cryptKey;
      byte[] authKey;

      //Generate crypt key
      using (var generator = new Rfc2898DeriveBytes(password, cryptSalt, Iterations))
      {
        cryptKey = generator.GetBytes(KeyBitSize / 8);
      }
      //Generate auth key
      using (var generator = new Rfc2898DeriveBytes(password, authSalt, Iterations))
      {
        authKey = generator.GetBytes(KeyBitSize / 8);
      }

      return SimpleDecrypt(encryptedMessage, cryptKey, authKey, cryptSalt.Length + authSalt.Length + nonSecretPayloadLength);
    }
  }
}
Run Code Online (Sandbox Code Playgroud)

Bouncy Castle AES-GCM [Gist]

/*
 * This work (Modern Encryption of a String C#, by James Tuley), 
 * identified by James Tuley, is free of known copyright restrictions.
 * https://gist.github.com/4336842
 * http://creativecommons.org/publicdomain/mark/1.0/ 
 */

using System;
using System.IO;
using System.Text;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Engines;
using Org.BouncyCastle.Crypto.Generators;
using Org.BouncyCastle.Crypto.Modes;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Security;
namespace Encryption
{

  public static class AESGCM
  {
    private static readonly SecureRandom Random = new SecureRandom();

    //Preconfigured Encryption Parameters
    public static readonly int NonceBitSize = 128;
    public static readonly int MacBitSize = 128;
    public static readonly int KeyBitSize = 256;

    //Preconfigured Password Key Derivation Parameters
    public static readonly int SaltBitSize = 128;
    public static readonly int Iterations = 10000;
    public static readonly int MinPasswordLength = 12;


    /// <summary>
    /// Helper that generates a random new key on each call.
    /// </summary>
    /// <returns></returns>
    public static byte[] NewKey()
    {
      var key = new byte[KeyBitSize / 8];
      Random.NextBytes(key);
      return key;
    }

    /// <summary>
    /// Simple Encryption And Authentication (AES-GCM) of a UTF8 string.
    /// </summary>
    /// <param name="secretMessage">The secret message.</param>
    /// <param name="key">The key.</param>
    /// <param name="nonSecretPayload">Optional non-secret payload.</param>
    /// <returns>
    /// Encrypted Message
    /// </returns>
    /// <exception cref="System.ArgumentException">Secret Message Required!;secretMessage</exception>
    /// <remarks>
    /// Adds overhead of (Optional-Payload + BlockSize(16) + Message +  HMac-Tag(16)) * 1.33 Base64
    /// </remarks>
    public static string SimpleEncrypt(string secretMessage, byte[] key, byte[] nonSecretPayload = null)
    {
      if (string.IsNullOrEmpty(secretMessage))
        throw new ArgumentException("Secret Message Required!", "secretMessage");

      var plainText = Encoding.UTF8.GetBytes(secretMessage);
      var cipherText = SimpleEncrypt(plainText, key, nonSecretPayload);
      return Convert.ToBase64String(cipherText);
    }


    /// <summary>
    /// Simple Decryption & Authentication (AES-GCM) of a UTF8 Message
    /// </summary>
    /// <param name="encryptedMessage">The encrypted message.</param>
    /// <param name="key">The key.</param>
    /// <param name="nonSecretPayloadLength">Length of the optional non-secret payload.</param>
    /// <returns>Decrypted Message</returns>
    public static string SimpleDecrypt(string encryptedMessage, byte[] key, int nonSecretPayloadLength = 0)
    {
      if (string.IsNullOrEmpty(encryptedMessage))
        throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");

      var cipherText = Convert.FromBase64String(encryptedMessage);
      var plainText = SimpleDecrypt(cipherText, key, nonSecretPayloadLength);
      return plainText == null ? null : Encoding.UTF8.GetString(plainText);
    }

    /// <summary>
    /// Simple Encryption And Authentication (AES-GCM) of a UTF8 String
    /// using key derived from a password (PBKDF2).
    /// </summary>
    /// <param name="secretMessage">The secret message.</param>
    /// <param name="password">The password.</param>
    /// <param name="nonSecretPayload">The non secret payload.</param>
    /// <returns>
    /// Encrypted Message
    /// </returns>
    /// <remarks>
    /// Significantly less secure than using random binary keys.
    /// Adds additional non secret payload for key generation parameters.
    /// </remarks>
    public static string SimpleEncryptWithPassword(string secretMessage, string password,
                             byte[] nonSecretPayload = null)
    {
      if (string.IsNullOrEmpty(secretMessage))
        throw new ArgumentException("Secret Message Required!", "secretMessage");

      var plainText = Encoding.UTF8.GetBytes(secretMessage);
      var cipherText = SimpleEncryptWithPassword(plainText, password, nonSecretPayload);
      return Convert.ToBase64String(cipherText);
    }


    /// <summary>
    /// Simple Decryption and Authentication (AES-GCM) of a UTF8 message
    /// using a key derived from a password (PBKDF2)
    /// </summary>
    /// <param name="encryptedMessage">The encrypted message.</param>
    /// <param name="password">The password.</param>
    /// <param name="nonSecretPayloadLength">Length of the non secret payload.</param>
    /// <returns>
    /// Decrypted Message
    /// </returns>
    /// <exception cref="System.ArgumentException">Encrypted Message Required!;encryptedMessage</exception>
    /// <remarks>
    /// Significantly less secure than using random binary keys.
    /// </remarks>
    public static string SimpleDecryptWithPassword(string encryptedMessage, string password,
                             int nonSecretPayloadLength = 0)
    {
      if (string.IsNullOrWhiteSpace(encryptedMessage))
        throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");

      var cipherText = Convert.FromBase64String(encryptedMessage);
      var plainText = SimpleDecryptWithPassword(cipherText, password, nonSecretPayloadLength);
      return plainText == null ? null : Encoding.UTF8.GetString(plainText);
    }

    public static byte[] SimpleEncrypt(byte[] secretMessage, byte[] key, byte[] nonSecretPayload = null)
    {
      //User Error Checks
      if (key == null || key.Length != KeyBitSize / 8)
        throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize), "key");

      if (secretMessage == null || secretMessage.Length == 0)
        throw new ArgumentException("Secret Message Required!", "secretMessage");

      //Non-secret Payload Optional
      nonSecretPayload = nonSecretPayload ?? new byte[] { };

      //Using random nonce large enough not to repeat
      var nonce = new byte[NonceBitSize / 8];
      Random.NextBytes(nonce, 0, nonce.Length);

      var cipher = new GcmBlockCipher(new AesFastEngine());
      var parameters = new AeadParameters(new KeyParameter(key), MacBitSize, nonce, nonSecretPayload);
      cipher.Init(true, parameters);

      //Generate Cipher Text With Auth Tag
      var cipherText = new byte[cipher.GetOutputSize(secretMessage.Length)];
      var len = cipher.ProcessBytes(secretMessage, 0, secretMessage.Length, cipherText, 0);
      cipher.DoFinal(cipherText, len);

      //Assemble Message
      using (var combinedStream = new MemoryStream())
      {
        using (var binaryWriter = new BinaryWriter(combinedStream))
        {
          //Prepend Authenticated Payload
          binaryWriter.Write(nonSecretPayload);
          //Prepend Nonce
          binaryWriter.Write(nonce);
          //Write Cipher Text
          binaryWriter.Write(cipherText);
        }
        return combinedStream.ToArray();
      }
    }

    public static byte[] SimpleDecrypt(byte[] encryptedMessage, byte[] key, int nonSecretPayloadLength = 0)
    {
      //User Error Checks
      if (key == null || key.Length != KeyBitSize / 8)
        throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize), "key");

      if (encryptedMessage == null || encryptedMessage.Length == 0)
        throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");

      using (var cipherStream = new MemoryStream(encryptedMessage))
      using (var cipherReader = new BinaryReader(cipherStream))
      {
        //Grab Payload
        var nonSecretPayload = cipherReader.ReadBytes(nonSecretPayloadLength);

        //Grab Nonce
        var nonce = cipherReader.ReadBytes(NonceBitSize / 8);

        var cipher = new GcmBlockCipher(new AesFastEngine());
        var parameters = new AeadParameters(new KeyParameter(key), MacBitSize, nonce, nonSecretPayload);
        cipher.Init(false, parameters);

        //Decrypt Cipher Text
        var cipherText = cipherReader.ReadBytes(encryptedMessage.Length - nonSecretPayloadLength - nonce.Length);
        var plainText = new byte[cipher.GetOutputSize(cipherText.Length)];  

        try
        {
          var len = cipher.ProcessBytes(cipherText, 0, cipherText.Length, plainText, 0);
          cipher.DoFinal(plainText, len);

        }
        catch (InvalidCipherTextException)
        {
          //Return null if it doesn't authenticate
          return null;
        }

        return plainText;
      }

    }

    public static byte[] SimpleEncryptWithPassword(byte[] secretMessage, string password, byte[] nonSecretPayload = null)
    {
      nonSecretPayload = nonSecretPayload ?? new byte[] {};

      //User Error Checks
      if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
        throw new ArgumentException(String.Format("Must have a password of at least {0} characters!", MinPasswordLength), "password");

      if (secretMessage == null || secretMessage.Length == 0)
        throw new ArgumentException("Secret Message Required!", "secretMessage");

      var generator = new Pkcs5S2ParametersGenerator();

      //Use Random Salt to minimize pre-generated weak password attacks.
      var salt = new byte[SaltBitSize / 8];
      Random.NextBytes(salt);

      generator.Init(
        PbeParametersGenerator.Pkcs5PasswordToBytes(password.ToCharArray()),
        salt,
        Iterations);

      //Generate Key
      var key = (KeyParameter)generator.GenerateDerivedMacParameters(KeyBitSize);

      //Create Full Non Secret Payload
      var payload = new byte[salt.Length + nonSecretPayload.Length];
      Array.Copy(nonSecretPayload, payload, nonSecretPayload.Length);
      Array.Copy(salt,0, payload,nonSecretPayload.Length, salt.Length);

      return SimpleEncrypt(secretMessage, key.GetKey(), payload);
    }

    public static byte[] SimpleDecryptWithPassword(byte[] encryptedMessage, string password, int nonSecretPayloadLength = 0)
    {
      //User Error Checks
      if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
        throw new ArgumentException(String.Format("Must have a password of at least {0} characters!", MinPasswordLength), "password");

      if (encryptedMessage == null || encryptedMessage.Length == 0)
        throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");

      var generator = new Pkcs5S2ParametersGenerator();

      //Grab Salt from Payload
      var salt = new byte[SaltBitSize / 8];
      Array.Copy(encryptedMessage, nonSecretPayloadLength, salt, 0, salt.Length);

      generator.Init(
        PbeParametersGenerator.Pkcs5PasswordToBytes(password.ToCharArray()),
        salt,
        Iterations);

      //Generate Key
      var key = (KeyParameter)generator.GenerateDerivedMacParameters(KeyBitSize);

      return SimpleDecrypt(encryptedMessage, key.GetKey(), salt.Length + nonSecretPayloadLength);
    }
  }
}
Run Code Online (Sandbox Code Playgroud)

  • 一个很好解释的用法部分将非常有用. (7认同)
  • 将这些样本发布在[代码审查](http://codereview.stackexchange.com/questions/14892/review-of-simplified-secure-encryption-of-a-string)上. (6认同)
  • 这是一本好书并且相对较新.我更推荐的是Dan Boneh的免费在线课程[Cryptography I](https://www.coursera.org/course/crypto).非常好的视频,非常好的测试,以及非常好的机器问题,为密码学的使用提供了良好的实践基础.对于AesCryptoServiceProvider,您应该使用您最熟悉的内容. (5认同)
  • 这是一个很好的问题,这些是使用[Authenticated Encryption](http://en.wikipedia.org/wiki/Authenticated_encryption)的例子,除了加密他们有[MAC](http://en.wikipedia.org/ wiki/Message_Authentication_Code)验证密文未被其他人修改,这主要是为了阻止[选择密文攻击](http://en.wikipedia.org/wiki/Chosen-ciphertext_attack).因此,当解密它时,计算MAC以检查附加的MAC以验证它,如果它验证它解密,如果不验证则返回null. (3认同)
  • MAC上的数组检查执行每个索引,因为如果返回不匹配的第一个字节,则可以使用定时攻击来计算伪密文上的新MAC. (3认同)
  • 太棒了,谢谢!你会推荐Niels Ferguson的Practical Cryptography吗?每个人似乎都推荐它用于密码学的入门.它非常清楚如何实现裸骨加密,但它是你所描述的额外安全措施,我最感兴趣.最后一个问题,如果你不介意; 您使用AesManaged我理解为未经认证.我/我可以使用AesCryptoServiceProvider吗?目前我觉得使用这门课更舒服. (3认同)
  • 我为以下问题的愚蠢道歉.1)为AESThenHMAC解决方案存储crypt和auth密钥的建议最佳实践如何或是什么?2)在应用程序的生命周期内使用相同的crypt和auth密钥是不是一个坏主意?我正在考虑使用此代码加密敏感数据,然后将其存储在我的数据库中. (3认同)
  • @TrueWill RandomNumberGenerator是一个抽象类,System.Security.Cryptography,RandomNumberGenerate.Create()实际上返回RNGCryptoServiceProvider -http://stackoverflow.com/a/12329913/637783.我想一个用法示例. (2认同)
  • @TrueWill这是真的,它是10000,因为它应该是缓慢的.当性能很重要时,最好不要*使用密码生成密钥.密码派生密钥对于大多数情况并不理想,我在这个例子中将它们作为选项添加,因为大多数SO加密示例使用密码:'(所以我想提供安全性的最佳实践来处理它们. (2认同)
  • @rdans它在技术上并不逊色,恰恰相反,它通过一步验证和加密更容易使用.第二个解决方案的缺点是你需要一个额外的依赖,这是我提供第一个解决方案的唯一原因. (2认同)
  • 这很棒,你回答问题也是如此.在适当的加密方面存在大量的细微之处和困难,而且它经常被搞砸也就不足为奇了. (2认同)

Tam*_*ege 105

以下是使用RSA的示例.

重要提示:使用RSA加密可以加密的数据大小有限制KeySize - MinimumPadding.例如256个字节(假设2048位密钥) - 42个字节(最小OEAP填充)= 214个字节(最大明文大小)

用RSA密钥替换your_rsa_key.

var provider = new System.Security.Cryptography.RSACryptoServiceProvider();
provider.ImportParameters(your_rsa_key);

var encryptedBytes = provider.Encrypt(
    System.Text.Encoding.UTF8.GetBytes("Hello World!"), true);

string decryptedTest = System.Text.Encoding.UTF8.GetString(
    provider.Decrypt(encryptedBytes, true));
Run Code Online (Sandbox Code Playgroud)

有关详细信息,请访问MSDN - RSACryptoServiceProvider

  • 即使在最初的问题中,也没有迹象表明"RSA"可能是一个不错的选择.非对称加密有其用途,但它不是默认加密的正确选择.您的示例代码将因较长的字符串而失败,因为RSA类不是为通用加密而设计的.如果您需要非对称功能,则应使用RSA加密对称密钥,并使用该对称密钥加密实际数据.所以我仍然相信你的答案是糟糕的建议. (36认同)
  • 为何选择RSA?RSA有其用途,但没有任何迹象表明这是其中之一. (11认同)
  • 我印象深刻,70票的错误答案!!!,正如CodesInChaos所说,对于这种类型的加密,你需要一个对称密钥,而不是Assymetric. (8认同)
  • 很抱歉问这么简单的问题,但是有谁能告诉我在哪里可以获得RSA密钥或如何生成RSA密钥? (6认同)
  • 这不是一个错误的答案,只是过度复杂的开销......使用AES /任何其他对称方法可以获得更好的结果. (5认同)
  • @CodeInChaos:因为当我提供这个答案时,差不多3年前,这个问题原本没有说明.那是后来添加的.我已经回答了原来的问题.查看问题历史记录并亲自查看. (2认同)

mat*_*ser 53

如果您使用的是ASP.Net,现在可以在.Net 4.0中使用内置功能.

System.Web.Security.MachineKey

.Net 4.5有MachineKey.Protect()MachineKey.Unprotect().

.Net 4.0有MachineKey.Encode()MachineKey.Decode().您应该将MachineKeyProtection设置为'All'.

在ASP.Net之外,这个类似乎会在每次重启应用程序时生成一个新密钥,因此不起作用.快速浏览ILSpy,我觉得如果缺少相应的app.settings,它会生成自己的默认值.所以你实际上可以在ASP.Net之外设置它.

我无法在System.Web命名空间之外找到nonASP.Net等效项.

  • 请原谅我的无知,但从网页上我找不到答案。如果我在一台机器上加密字符串,将其写入数据库,然后在另一台机器上读取,只要用途参数的值相同,我是否可以解密它?也许我对类名“ MachineKey”感到困惑 (2认同)
  • @AdriaanDavel根据链接文档,“ MachineKey API仅应在ASP.NET应用程序中使用。MachineKeyAPI在ASP.NET应用程序上下文之外的行为是未定义的” –仅当您喜欢以下游戏时,才使用它俄罗斯轮盘 (2认同)

ner*_*rdo 46

BouncyCastle是一个很棒的.NET加密库,它可以作为Nuget包用于安装到您的项目中.我喜欢它比System.Security.Cryptography库中当前可用的更多.它为可用算法提供了更多选项,并为这些算法提供了更多模式.

这是TwoFish实现的一个例子,由Bruce Schneier(英雄给我们所有偏执狂的人)写成.它是一种对称算法,如Rijndael(又名AES).它是AES标准的三个决赛选手之一,也是Bruce Schneier编写的另一个名为BlowFish的着名算法的兄弟.

bouncycastle的第一件事就是创建一个加密器类,这样可以更容易地在库中实现其他分组密码.以下加密器类接受泛型参数T,其中T实现IBlockCipher并具有默认构造函数.

更新: 由于受欢迎的需求,我决定实施生成随机IV以及在此类中包含HMAC.虽然从风格的角度来看,这与单一责任的SOLID原则背道而驰,因为这个类的性质是我所设想的.该类现在将采用两个通用参数,一个用于密码,另一个用于摘要.它使用RNGCryptoServiceProvider自动生成IV以提供良好的RNG熵,并允许您使用BouncyCastle所需的任何摘要算法来生成MAC.

using System;
using System.Security.Cryptography;
using System.Text;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Macs;
using Org.BouncyCastle.Crypto.Modes;
using Org.BouncyCastle.Crypto.Paddings;
using Org.BouncyCastle.Crypto.Parameters;

public sealed class Encryptor<TBlockCipher, TDigest>
    where TBlockCipher : IBlockCipher, new()
    where TDigest : IDigest, new()
{
    private Encoding encoding;

    private IBlockCipher blockCipher;

    private BufferedBlockCipher cipher;

    private HMac mac;

    private byte[] key;

    public Encryptor(Encoding encoding, byte[] key, byte[] macKey)
    {
        this.encoding = encoding;
        this.key = key;
        this.Init(key, macKey, new Pkcs7Padding());
    }

    public Encryptor(Encoding encoding, byte[] key, byte[] macKey, IBlockCipherPadding padding)
    {
        this.encoding = encoding;
        this.key = key;
        this.Init(key, macKey, padding);
    }

    private void Init(byte[] key, byte[] macKey, IBlockCipherPadding padding)
    {
        this.blockCipher = new CbcBlockCipher(new TBlockCipher());
        this.cipher = new PaddedBufferedBlockCipher(this.blockCipher, padding);
        this.mac = new HMac(new TDigest());
        this.mac.Init(new KeyParameter(macKey));
    }

    public string Encrypt(string plain)
    {
        return Convert.ToBase64String(EncryptBytes(plain));
    }

    public byte[] EncryptBytes(string plain)
    {
        byte[] input = this.encoding.GetBytes(plain);

        var iv = this.GenerateIV();

        var cipher = this.BouncyCastleCrypto(true, input, new ParametersWithIV(new KeyParameter(key), iv));
        byte[] message = CombineArrays(iv, cipher);

        this.mac.Reset();
        this.mac.BlockUpdate(message, 0, message.Length);
        byte[] digest = new byte[this.mac.GetUnderlyingDigest().GetDigestSize()];
        this.mac.DoFinal(digest, 0);

        var result = CombineArrays(digest, message);
        return result;
    }

    public byte[] DecryptBytes(byte[] bytes)
    {
        // split the digest into component parts
        var digest = new byte[this.mac.GetUnderlyingDigest().GetDigestSize()];
        var message = new byte[bytes.Length - digest.Length];
        var iv = new byte[this.blockCipher.GetBlockSize()];
        var cipher = new byte[message.Length - iv.Length];

        Buffer.BlockCopy(bytes, 0, digest, 0, digest.Length);
        Buffer.BlockCopy(bytes, digest.Length, message, 0, message.Length);
        if (!IsValidHMac(digest, message))
        {
            throw new CryptoException();
        }

        Buffer.BlockCopy(message, 0, iv, 0, iv.Length);
        Buffer.BlockCopy(message, iv.Length, cipher, 0, cipher.Length);

        byte[] result = this.BouncyCastleCrypto(false, cipher, new ParametersWithIV(new KeyParameter(key), iv));
        return result;
    }

    public string Decrypt(byte[] bytes)
    {
        return this.encoding.GetString(DecryptBytes(bytes));
    }

    public string Decrypt(string cipher)
    {
        return this.Decrypt(Convert.FromBase64String(cipher));
    }

    private bool IsValidHMac(byte[] digest, byte[] message)
    {
        this.mac.Reset();
        this.mac.BlockUpdate(message, 0, message.Length);
        byte[] computed = new byte[this.mac.GetUnderlyingDigest().GetDigestSize()];
        this.mac.DoFinal(computed, 0);

        return AreEqual(digest,computed);
    }

    private static bool AreEqual(byte [] digest, byte[] computed)
    {
        if(digest.Length != computed.Length)
        {
            return false;
        }

        int result = 0;
        for (int i = 0; i < digest.Length; i++)
        {
            // compute equality of all bytes before returning.
            //   helps prevent timing attacks: 
            //   https://codahale.com/a-lesson-in-timing-attacks/
            result |= digest[i] ^ computed[i];
        }

        return result == 0;
    }

    private byte[] BouncyCastleCrypto(bool forEncrypt, byte[] input, ICipherParameters parameters)
    {
        try
        {
            cipher.Init(forEncrypt, parameters);

            return this.cipher.DoFinal(input);
        }
        catch (CryptoException)
        {
            throw;
        }
    }

    private byte[] GenerateIV()
    {
        using (var provider = new RNGCryptoServiceProvider())
        {
            // 1st block
            byte[] result = new byte[this.blockCipher.GetBlockSize()];
            provider.GetBytes(result);

            return result;
        }
    }

    private static byte[] CombineArrays(byte[] source1, byte[] source2)
    {
        byte[] result = new byte[source1.Length + source2.Length];
        Buffer.BlockCopy(source1, 0, result, 0, source1.Length);
        Buffer.BlockCopy(source2, 0, result, source1.Length, source2.Length);

        return result;
    }
}
Run Code Online (Sandbox Code Playgroud)

接下来只需在新类上调用encrypt和decrypt方法,这是使用twofish的示例:

var encrypt = new Encryptor<TwofishEngine, Sha1Digest>(Encoding.UTF8, key, hmacKey);

string cipher = encrypt.Encrypt("TEST");   
string plainText = encrypt.Decrypt(cipher);
Run Code Online (Sandbox Code Playgroud)

替换像TripleDES这样的另一个分组密码同样容易:

var des = new Encryptor<DesEdeEngine, Sha1Digest>(Encoding.UTF8, key, hmacKey);

string cipher = des.Encrypt("TEST");
string plainText = des.Decrypt(cipher);
Run Code Online (Sandbox Code Playgroud)

最后,如果您想将AES与SHA256 HMAC一起使用,您可以执行以下操作:

var aes = new Encryptor<AesEngine, Sha256Digest>(Encoding.UTF8, key, hmacKey);

cipher = aes.Encrypt("TEST");
plainText = aes.Decrypt(cipher);
Run Code Online (Sandbox Code Playgroud)

关于加密最困难的部分实际上是处理密钥而不是算法.您必须考虑存储密钥的位置,如果必须,还要考虑如何交换密钥.这些算法都经受住了时间的考验,并且极难打破.想要窃取你的信息的人不会花时间对你的消息进行密码分析,他们会试图找出你的密钥是什么或在哪里.因此#1明智地选择你的密钥,#2将它们存储在一个安全的地方,如果你使用web.config和IIS,那么你可以加密web.config的部分,最后如果你必须交换密钥,请确保你的用于交换密钥的协议是安全的.

更新2 更改了比较方法以减轻时间攻击.点击此处查看更多信息http://codahale.com/a-lesson-in-timing-attacks/.还更新为默认为PKCS7填充并添加了新的构造函数,以允许最终用户选择他们想要使用的填充.感谢@CodesInChaos的建议.

  • 1)这个课程使用非常烦人,因为你把IV管理的负担放在了几乎肯定会弄错的用户身上.2)缺乏MAC使得这容易受到填充神谕的影响. (3认同)
  • 1)你的填充物看起来很破碎.您添加零填充,不要删除它.零填充是一个坏主意,因为它无法可靠地删除.请改用PKCS#7填充.我希望bouncycastle加密/解密功能已经支持这一点.2)你应该使用恒定的时间比较来验证MAC,而不是`SequenceEqual`.这避免了时间旁路泄漏了所呈现的MAC的前缀和实际MAC匹配的时间. (3认同)
  • @CodesInChaos我同意,感谢您对此进行检查,我进行了编辑以解决这些问题。– nerdybeardo (2认同)

Gil*_*hen 17

免责声明:此解决方案仅应用于未向公众公开的静态数据(例如 - 配置文件或数据库).只有在这种情况下,由于较低的维护,可以认为快速和肮脏的解决方案比@ jbtule的解决方案更好.

原帖:我发现jbtule的答案有点复杂,因为快速和脏的安全AES字符串加密和Brett的答案有一个错误,初始化矢量是一个固定的值,使其易受填充攻击,所以我修复了Brett的代码和添加了一个随机IV,它被添加到chipered字符串中,为每个相同值的加密创建一个不同的加密值:

加密:

public static string Encrypt(string clearText)
{            
    byte[] clearBytes = Encoding.Unicode.GetBytes(clearText);
    using (Aes encryptor = Aes.Create())
    {
        byte[] IV = new byte[15];
        rand.NextBytes(IV);
        Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(EncryptionKey, IV);
        encryptor.Key = pdb.GetBytes(32);
        encryptor.IV = pdb.GetBytes(16);
        using (MemoryStream ms = new MemoryStream())
        {
            using (CryptoStream cs = new CryptoStream(ms, encryptor.CreateEncryptor(), CryptoStreamMode.Write))
            {
                cs.Write(clearBytes, 0, clearBytes.Length);
                cs.Close();
            }
            clearText = Convert.ToBase64String(IV) + Convert.ToBase64String(ms.ToArray());
        }
    }
    return clearText;
}
Run Code Online (Sandbox Code Playgroud)

解密:

public static string Decrypt(string cipherText)
{
    byte[] IV = Convert.FromBase64String(cipherText.Substring(0, 20));
    cipherText = cipherText.Substring(20).Replace(" ", "+");
    byte[] cipherBytes = Convert.FromBase64String(cipherText);
    using (Aes encryptor = Aes.Create())
    {
        Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(EncryptionKey, IV);
        encryptor.Key = pdb.GetBytes(32);
        encryptor.IV = pdb.GetBytes(16);
        using (MemoryStream ms = new MemoryStream())
        {
            using (CryptoStream cs = new CryptoStream(ms, encryptor.CreateDecryptor(), CryptoStreamMode.Write))
            {
                cs.Write(cipherBytes, 0, cipherBytes.Length);
                cs.Close();
            }
            cipherText = Encoding.Unicode.GetString(ms.ToArray());
        }
    }
    return cipherText;
}
Run Code Online (Sandbox Code Playgroud)

用密钥替换EncryptionKey.在我的实现中,密钥保存在配置文件(web.config\app.config)中,因为您不应该将其保存为硬编码.配置文件加密,因此密钥不会保存为明文.

protected static string _Key = "";
protected static string EncryptionKey
{
    get
    {
        if (String.IsNullOrEmpty(_Key))
        {
            _Key = ConfigurationManager.AppSettings["AESKey"].ToString();
        }

        return _Key;
    }
}
Run Code Online (Sandbox Code Playgroud)

  • @jbtule实际上没有,这是Base64函数的编码由于某种原因.这确实用于静止数据,我同意你的评论.我会加上它. (2认同)

小智 11

加密

public string EncryptString(string inputString)
{
    MemoryStream memStream = null;
    try
    {
        byte[] key = { };
        byte[] IV = { 12, 21, 43, 17, 57, 35, 67, 27 };
        string encryptKey = "aXb2uy4z"; // MUST be 8 characters
        key = Encoding.UTF8.GetBytes(encryptKey);
        byte[] byteInput = Encoding.UTF8.GetBytes(inputString);
        DESCryptoServiceProvider provider = new DESCryptoServiceProvider();
        memStream = new MemoryStream();
        ICryptoTransform transform = provider.CreateEncryptor(key, IV);
        CryptoStream cryptoStream = new CryptoStream(memStream, transform, CryptoStreamMode.Write);
        cryptoStream.Write(byteInput, 0, byteInput.Length);
        cryptoStream.FlushFinalBlock();
    }
    catch (Exception ex)
    {
        Response.Write(ex.Message);
    }
    return Convert.ToBase64String(memStream.ToArray());
}
Run Code Online (Sandbox Code Playgroud)

解密:

public string DecryptString(string inputString)
{
    MemoryStream memStream = null;
    try
    {
        byte[] key = { };
        byte[] IV = { 12, 21, 43, 17, 57, 35, 67, 27 };
        string encryptKey = "aXb2uy4z"; // MUST be 8 characters
        key = Encoding.UTF8.GetBytes(encryptKey);
        byte[] byteInput = new byte[inputString.Length];
        byteInput = Convert.FromBase64String(inputString);
        DESCryptoServiceProvider provider = new DESCryptoServiceProvider();
        memStream = new MemoryStream();
        ICryptoTransform transform = provider.CreateDecryptor(key, IV);
        CryptoStream cryptoStream = new CryptoStream(memStream, transform, CryptoStreamMode.Write);
        cryptoStream.Write(byteInput, 0, byteInput.Length);
        cryptoStream.FlushFinalBlock();
    }
    catch (Exception ex)
    {
        Response.Write(ex.Message);
    }

    Encoding encoding1 = Encoding.UTF8;
    return encoding1.GetString(memStream.ToArray());
}
Run Code Online (Sandbox Code Playgroud)

  • -1这非常弱.1)DES易于使用56位密钥进行暴力破解.2)密钥是二进制,而不是UTF8.如果密钥由ASCII字符组成(可能在实践中),则会将有效密钥大小减小到48位.3)每个消息的IV应该是不同的4)缺少MAC会让你对主动攻击开放,包括填充神谕. (8认同)
  • +1 OP有一个非常简单的问题,没有要求最大强度,这个答案完全对应.至少我可以使用它,因为我也有一个简单的加密用法. (8认同)
  • -1 @Roland 正如 CodesInChaos 所提到的,每条消息的 IV 都需要不同,很简单,如果不是,则您使用的 API 不正确,因此永远不应使用此代码。时期。不要掩盖 48 位密钥使任何没有密钥的人都可以在一天内解密,因此这不再是加密,因此无法回答问题。 (2认同)
  • **安全警告:请勿使用此代码** 见@CodesInChaos 以上评论 (2认同)
  • **将其用于简单的应用**如果您要保护核秘密,请使用其他物品。这是按原样工作的。 (2认同)

Rah*_*odi 6

在c#中引用了加密和解密字符串,我找到了一个很好的解决方案:

static readonly string PasswordHash = "P@@Sw0rd";
static readonly string SaltKey = "S@LT&KEY";
static readonly string VIKey = "@1B2c3D4e5F6g7H8";
Run Code Online (Sandbox Code Playgroud)

用于加密

public static string Encrypt(string plainText)
{
    byte[] plainTextBytes = Encoding.UTF8.GetBytes(plainText);

    byte[] keyBytes = new Rfc2898DeriveBytes(PasswordHash, Encoding.ASCII.GetBytes(SaltKey)).GetBytes(256 / 8);
    var symmetricKey = new RijndaelManaged() { Mode = CipherMode.CBC, Padding = PaddingMode.Zeros };
    var encryptor = symmetricKey.CreateEncryptor(keyBytes, Encoding.ASCII.GetBytes(VIKey));

    byte[] cipherTextBytes;

    using (var memoryStream = new MemoryStream())
    {
        using (var cryptoStream = new CryptoStream(memoryStream, encryptor, CryptoStreamMode.Write))
        {
            cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length);
            cryptoStream.FlushFinalBlock();
            cipherTextBytes = memoryStream.ToArray();
            cryptoStream.Close();
        }
        memoryStream.Close();
    }
    return Convert.ToBase64String(cipherTextBytes);
}
Run Code Online (Sandbox Code Playgroud)

对于Decrypt

public static string Decrypt(string encryptedText)
{
    byte[] cipherTextBytes = Convert.FromBase64String(encryptedText);
    byte[] keyBytes = new Rfc2898DeriveBytes(PasswordHash, Encoding.ASCII.GetBytes(SaltKey)).GetBytes(256 / 8);
    var symmetricKey = new RijndaelManaged() { Mode = CipherMode.CBC, Padding = PaddingMode.None };

    var decryptor = symmetricKey.CreateDecryptor(keyBytes, Encoding.ASCII.GetBytes(VIKey));
    var memoryStream = new MemoryStream(cipherTextBytes);
    var cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read);
    byte[] plainTextBytes = new byte[cipherTextBytes.Length];

    int decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length);
    memoryStream.Close();
    cryptoStream.Close();
    return Encoding.UTF8.GetString(plainTextBytes, 0, decryptedByteCount).TrimEnd("\0".ToCharArray());
}
Run Code Online (Sandbox Code Playgroud)

  • 硬编码盐和IV,*和*使用ASCII表示,这是各种错误. (5认同)
  • **安全警告:不要使用此代码**请参阅上面的评论. (5认同)
  • 我道歉,我没有拼出这个.IV不是关键,保密是提供零增加的安全性,并使其可预测性失去相当多的安全性.硬编码IV对于实际知道如何使用AES-CBC加密的人来说是完全不合理/不合逻辑/错误的.`Encoding.ASCII.GetBytes`用于将熵添加到人类选择的东西的数据,将比熵低于预期,并且是**非常**新手的错误.这些都是容易纠正的东西,但你不是,所以由于安全隐患,我的大胆警告仍然存在. (4认同)
  • 拉胡尔,冷静下来!坐下来,放松一下,想想为什么来自@jbtule的所有3条评论都得到了投票.他正在谈论一些明智的事情,以便让你走上正确的道路.没有什么可以冒犯的.你是SO的新手.你会意识到它最终是如何运作的. (2认同)

小智 6

以下示例演示了如何加密和解密示例数据:

    // This constant is used to determine the keysize of the encryption algorithm in bits.
    // We divide this by 8 within the code below to get the equivalent number of bytes.
    private const int Keysize = 128;

    // This constant determines the number of iterations for the password bytes generation function.
    private const int DerivationIterations = 1000;

    public static string Encrypt(string plainText, string passPhrase)
    {
        // Salt and IV is randomly generated each time, but is preprended to encrypted cipher text
        // so that the same Salt and IV values can be used when decrypting.  
        var saltStringBytes = GenerateBitsOfRandomEntropy(16);
        var ivStringBytes = GenerateBitsOfRandomEntropy(16);
        var plainTextBytes = Encoding.UTF8.GetBytes(plainText);
        using (var password = new Rfc2898DeriveBytes(passPhrase, saltStringBytes, DerivationIterations))
        {
            var keyBytes = password.GetBytes(Keysize / 8);
            using (var symmetricKey = new RijndaelManaged())
            {
                symmetricKey.BlockSize = 128;
                symmetricKey.Mode = CipherMode.CBC;
                symmetricKey.Padding = PaddingMode.PKCS7;
                using (var encryptor = symmetricKey.CreateEncryptor(keyBytes, ivStringBytes))
                {
                    using (var memoryStream = new MemoryStream())
                    {
                        using (var cryptoStream = new CryptoStream(memoryStream, encryptor, CryptoStreamMode.Write))
                        {
                            cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length);
                            cryptoStream.FlushFinalBlock();
                            // Create the final bytes as a concatenation of the random salt bytes, the random iv bytes and the cipher bytes.
                            var cipherTextBytes = saltStringBytes;
                            cipherTextBytes = cipherTextBytes.Concat(ivStringBytes).ToArray();
                            cipherTextBytes = cipherTextBytes.Concat(memoryStream.ToArray()).ToArray();
                            memoryStream.Close();
                            cryptoStream.Close();
                            return Convert.ToBase64String(cipherTextBytes);
                        }
                    }
                }
            }
        }
    }

    public static string Decrypt(string cipherText, string passPhrase)
    {
        // Get the complete stream of bytes that represent:
        // [32 bytes of Salt] + [32 bytes of IV] + [n bytes of CipherText]
        var cipherTextBytesWithSaltAndIv = Convert.FromBase64String(cipherText);
        // Get the saltbytes by extracting the first 32 bytes from the supplied cipherText bytes.
        var saltStringBytes = cipherTextBytesWithSaltAndIv.Take(Keysize / 8).ToArray();
        // Get the IV bytes by extracting the next 32 bytes from the supplied cipherText bytes.
        var ivStringBytes = cipherTextBytesWithSaltAndIv.Skip(Keysize / 8).Take(Keysize / 8).ToArray();
        // Get the actual cipher text bytes by removing the first 64 bytes from the cipherText string.
        var cipherTextBytes = cipherTextBytesWithSaltAndIv.Skip((Keysize / 8) * 2).Take(cipherTextBytesWithSaltAndIv.Length - ((Keysize / 8) * 2)).ToArray();

        using (var password = new Rfc2898DeriveBytes(passPhrase, saltStringBytes, DerivationIterations))
        {
            var keyBytes = password.GetBytes(Keysize / 8);
            using (var symmetricKey = new RijndaelManaged())
            {
                symmetricKey.BlockSize = 128;
                symmetricKey.Mode = CipherMode.CBC;
                symmetricKey.Padding = PaddingMode.PKCS7;
                using (var decryptor = symmetricKey.CreateDecryptor(keyBytes, ivStringBytes))
                {
                    using (var memoryStream = new MemoryStream(cipherTextBytes))
                    {
                        using (var cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read))
                        {
                            var plainTextBytes = new byte[cipherTextBytes.Length];
                            var decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length);
                            memoryStream.Close();
                            cryptoStream.Close();
                            return Encoding.UTF8.GetString(plainTextBytes, 0, decryptedByteCount);
                        }
                    }
                }
            }
        }
    }

    private static byte[] GenerateBitsOfRandomEntropy(int size)
    {
        // 32 Bytes will give us 256 bits.
        // 16 Bytes will give us 128 bits.
        var randomBytes = new byte[size]; 
        using (var rngCsp = new RNGCryptoServiceProvider())
        {
            // Fill the array with cryptographically secure random bytes.
            rngCsp.GetBytes(randomBytes);
        }
        return randomBytes;
    }
Run Code Online (Sandbox Code Playgroud)