TRANSFORMERS:要求填充,但标记器没有填充标记

Pab*_*don 16 python tokenize tensorflow pytorch huggingface-transformers

尝试使用相同的数据集顺序评估多个 Transformer 模型,以检查哪个模型表现更好。

型号列表是这样的:

MODELS = [
      ('xlm-mlm-enfr-1024'   ,"XLMModel"),
      ('distilbert-base-cased', "DistilBertModel"),
      ('bert-base-uncased'     ,"BertModel"),
      ('roberta-base'        ,"RobertaModel"),
      ("cardiffnlp/twitter-roberta-base-sentiment","RobertaSentTW"),
      ('xlnet-base-cased'     ,"XLNetModel"),
      #('ctrl'                ,"CTRLModel"),
      ('transfo-xl-wt103'    ,"TransfoXLModel"),
      ('bert-base-cased'       ,"BertModelUncased"),
      ('xlm-roberta-base'     ,"XLMRobertaModel"),
      ('openai-gpt'           ,"OpenAIGPTModel"),
      ('gpt2'                 ,"GPT2Model")
Run Code Online (Sandbox Code Playgroud)

所有这些都工作正常'ctrl',直到模型返回此错误:

Asking to pad, but the tokenizer does not have a padding token. Please select a token to use as 'pad_token' '(tokenizer.pad_token = tokenizer.eos_token e.g.)' or add a new pad token via 'tokenizer.add_special_tokens({'pad_token': '[PAD]'})'.

对我的数据集的句子进行标记时。

标记化代码是

SEQ_LEN = MAX_LEN #(50)

for pretrained_weights, model_name in MODELS:

print("***************** INICIANDO " ,model_name,", weights ",pretrained_weights, "********* ")
print("carganzo el tokenizador ()")
tokenizer = AutoTokenizer.from_pretrained(pretrained_weights)
print("creando el modelo preentrenado")
transformer_model = TFAutoModel.from_pretrained(pretrained_weights)
print("aplicando el tokenizador al dataset")

##APLICAMOS EL TOKENIZADOR##

def tokenize(sentence):
  
  tokens = tokenizer.encode_plus(sentence, max_length=MAX_LEN,
                               truncation=True, padding='max_length',
                               add_special_tokens=True, return_attention_mask=True,
                               return_token_type_ids=False, return_tensors='tf')
  return tokens['input_ids'], tokens['attention_mask']

# initialize two arrays for input tensors
Xids = np.zeros((len(df), SEQ_LEN))
Xmask = np.zeros((len(df), SEQ_LEN))

for i, sentence in enumerate(df['tweet']):
    Xids[i, :], Xmask[i, :] = tokenize(sentence)
    if i % 10000 == 0:
        print(i)  # do this so we can see some progress


arr = df['label'].values  # take label column in df as array

labels = np.zeros((arr.size, arr.max()+1))  # initialize empty (all zero) label array
labels[np.arange(arr.size), arr] = 1  # add ones in indices where we have a value`
Run Code Online (Sandbox Code Playgroud)

我尝试按照解决方案告诉我的方式定义填充令牌,但随后出现此错误

could not broadcast input array from shape (3,) into shape (50,)
Run Code Online (Sandbox Code Playgroud)

排队

Xids[i, :], Xmask[i, :] = tokenize(sentence)
Run Code Online (Sandbox Code Playgroud)

我也尝试过这个解决方案,但它也不起作用。

如果您已经阅读到这里,谢谢您。

需要任何帮助。

Goo*_*ogr 18

kkgarg 的想法是正确的,但您还需要更新模型令牌嵌入大小。所以,代码将是:

tokenizer = AutoTokenizer.from_pretrained(pretrained_weights)
model = TFAutoModel.from_pretrained(pretrained_weights)
if tokenizer.pad_token is None:
    tokenizer.add_special_tokens({'pad_token': '[PAD]'})
    model.resize_token_embeddings(len(tokenizer))
Run Code Online (Sandbox Code Playgroud)

检查这个相关问题。


kkg*_*arg 10

您可以[PAD]使用add_special_tokensAPI 添加令牌。

tokenizer = AutoTokenizer.from_pretrained(pretrained_weights)
if tokenizer.pad_token is None:
    tokenizer.add_special_tokens({'pad_token': '[PAD]'})
Run Code Online (Sandbox Code Playgroud)