Art*_*nov 8 python numpy fft scipy numba
各位程序员大家好
我正在尝试与装饰器一起制作discrete Fourier transform一个:minimal working examplenumba.njit
import numba
import numpy as np
import scipy
import scipy.fftpack
@numba.njit
def main():
wave = [[[0.09254795, 0.10001078, 0.10744892, 0.07755555, 0.08506225, 0.09254795],
[0.09907245, 0.10706145, 0.11502401, 0.08302302, 0.09105898, 0.09907245],
[0.09565098, 0.10336405, 0.11105158, 0.08015589, 0.08791429, 0.09565098],
[0.00181467, 0.001961, 0.00210684, 0.0015207, 0.00166789, 0.00181467]],
[[-0.45816267, - 0.46058367, - 0.46289091, - 0.45298182, - 0.45562851, -0.45816267],
[-0.49046506, - 0.49305676, - 0.49552669, - 0.48491893, - 0.48775223, -0.49046506],
[-0.47352483, - 0.47602701, - 0.47841162, - 0.46817027, - 0.4709057, -0.47352483],
[-0.00898358, - 0.00903105, - 0.00907629, - 0.008882, - 0.00893389, -0.00898358]],
[[0.36561472, 0.36057289, 0.355442, 0.37542627, 0.37056626, 0.36561472],
[0.39139261, 0.38599531, 0.38050268, 0.40189591, 0.39669325, 0.39139261],
[0.37787385, 0.37266296, 0.36736003, 0.38801438, 0.38299141, 0.37787385],
[0.00716892, 0.00707006, 0.00696945, 0.0073613, 0.00726601, 0.00716892]]]
new_fft = scipy.fftpack.fft(wave)
if __name__ == '__main__':
main()
Run Code Online (Sandbox Code Playgroud)
输出:
C:\Users\Artur\Anaconda\python.exe C:/Users/Artur/Desktop/RL_framework/help_functions/test2.py
Traceback (most recent call last):
File "C:/Users/Artur/Desktop/RL_framework/help_functions/test2.py", line 25, in <module>
main()
File "C:\Users\Artur\Anaconda\lib\site-packages\numba\core\dispatcher.py", line 401, in _compile_for_args
error_rewrite(e, 'typing')
File "C:\Users\Artur\Anaconda\lib\site-packages\numba\core\dispatcher.py", line 344, in error_rewrite
reraise(type(e), e, None)
File "C:\Users\Artur\Anaconda\lib\site-packages\numba\core\utils.py", line 80, in reraise
raise value.with_traceback(tb)
numba.core.errors.TypingError: Failed in nopython mode pipeline (step: nopython frontend)
Unknown attribute 'fft' of type Module(<module 'scipy.fftpack' from 'C:\\Users\\Artur\\Anaconda\\lib\\site-packages\\scipy\\fftpack\\__init__.py'>)
File "test2.py", line 21:
def main():
<source elided>
new_fft = scipy.fftpack.fft(wave)
^
[1] During: typing of get attribute at C:/Users/Artur/Desktop/RL_framework/help_functions/test2.py (21)
File "test2.py", line 21:
def main():
<source elided>
new_fft = scipy.fftpack.fft(wave)
^
Process finished with exit code 1
Run Code Online (Sandbox Code Playgroud)
不幸的是scipy.fftpack.fft,这似乎是一个不支持的遗留功能numba。所以我寻找替代方案。我找到了两个:
1.
scipy.fft(wave)这是上述遗留功能的更新版本。它产生以下错误输出:
C:\Users\Artur\Anaconda\python.exe C:/Users/Artur/Desktop/RL_framework/help_functions/test2.py
Traceback (most recent call last):
File "C:/Users/Artur/Desktop/RL_framework/help_functions/test2.py", line 25, in <module>
main()
File "C:\Users\Artur\Anaconda\lib\site-packages\numba\core\dispatcher.py", line 401, in _compile_for_args
error_rewrite(e, 'typing')
File "C:\Users\Artur\Anaconda\lib\site-packages\numba\core\dispatcher.py", line 344, in error_rewrite
reraise(type(e), e, None)
File "C:\Users\Artur\Anaconda\lib\site-packages\numba\core\utils.py", line 80, in reraise
raise value.with_traceback(tb)
numba.core.errors.TypingError: Failed in nopython mode pipeline (step: nopython frontend)
Invalid use of Module(<module 'scipy.fft' from 'C:\\Users\\Artur\\Anaconda\\lib\\site-packages\\scipy\\fft\\__init__.py'>) with parameters (list(list(list(float64))))
No type info available for Module(<module 'scipy.fft' from 'C:\\Users\\Artur\\Anaconda\\lib\\site-packages\\scipy\\fft\\__init__.py'>) as a callable.
[1] During: resolving callee type: Module(<module 'scipy.fft' from 'C:\\Users\\Artur\\Anaconda\\lib\\site-packages\\scipy\\fft\\__init__.py'>)
[2] During: typing of call at C:/Users/Artur/Desktop/RL_framework/help_functions/test2.py (21)
File "test2.py", line 21:
def main():
<source elided>
new_fft = scipy.fft(wave)
^
Process finished with exit code 1
Run Code Online (Sandbox Code Playgroud)
2.
np.fft.fft(wave)似乎支持但也会产生错误:
C:\Users\Artur\Anaconda\python.exe C:/Users/Artur/Desktop/RL_framework/help_functions/test2.py
Traceback (most recent call last):
File "C:/Users/Artur/Desktop/RL_framework/help_functions/test2.py", line 25, in <module>
main()
File "C:\Users\Artur\Anaconda\lib\site-packages\numba\core\dispatcher.py", line 401, in _compile_for_args
error_rewrite(e, 'typing')
File "C:\Users\Artur\Anaconda\lib\site-packages\numba\core\dispatcher.py", line 344, in error_rewrite
reraise(type(e), e, None)
File "C:\Users\Artur\Anaconda\lib\site-packages\numba\core\utils.py", line 80, in reraise
raise value.with_traceback(tb)
numba.core.errors.TypingError: Failed in nopython mode pipeline (step: nopython frontend)
Unknown attribute 'fft' of type Module(<module 'numpy.fft' from 'C:\\Users\\Artur\\Anaconda\\lib\\site-packages\\numpy\\fft\\__init__.py'>)
File "test2.py", line 21:
def main():
<source elided>
new_fft = np.fft.fft(wave)
^
[1] During: typing of get attribute at C:/Users/Artur/Desktop/RL_framework/help_functions/test2.py (21)
File "test2.py", line 21:
def main():
<source elided>
new_fft = np.fft.fft(wave)
^
Process finished with exit code 1
Run Code Online (Sandbox Code Playgroud)
您知道fft与numba.njit装饰器一起使用的函数吗?
如果您对 1D DFT 感到满意,您也可以使用 FFT。\n这里报告了一个适用于fft_1d()任意输入大小的 Numba 友好实现:
import cmath\nimport numpy as np\nimport numba as nb\n\n\n@nb.jit\ndef ilog2(n):\n result = -1\n if n < 0:\n n = -n\n while n > 0:\n n >>= 1\n result += 1\n return result\n\n\n@nb.njit(fastmath=True)\ndef reverse_bits(val, width):\n result = 0\n for _ in range(width):\n result = (result << 1) | (val & 1)\n val >>= 1\n return result\n\n\n@nb.njit(fastmath=True)\ndef fft_1d_radix2_rbi(arr, direct=True):\n arr = np.asarray(arr, dtype=np.complex128)\n n = len(arr)\n levels = ilog2(n)\n e_arr = np.empty_like(arr)\n coeff = (-2j if direct else 2j) * cmath.pi / n\n for i in range(n):\n e_arr[i] = cmath.exp(coeff * i)\n result = np.empty_like(arr)\n for i in range(n):\n result[i] = arr[reverse_bits(i, levels)]\n # Radix-2 decimation-in-time FFT\n size = 2\n while size <= n:\n half_size = size // 2\n step = n // size\n for i in range(0, n, size):\n k = 0\n for j in range(i, i + half_size):\n temp = result[j + half_size] * e_arr[k]\n result[j + half_size] = result[j] - temp\n result[j] += temp\n k += step\n size *= 2\n return result\n\n\n@nb.njit(fastmath=True)\ndef fft_1d_arb(arr, fft_1d_r2=fft_1d_radix2_rbi):\n """1D FFT for arbitrary inputs using chirp z-transform"""\n arr = np.asarray(arr, dtype=np.complex128)\n n = len(arr)\n m = 1 << (ilog2(n) + 2)\n e_arr = np.empty(n, dtype=np.complex128)\n for i in range(n):\n e_arr[i] = cmath.exp(-1j * cmath.pi * (i * i) / n)\n result = np.zeros(m, dtype=np.complex128)\n result[:n] = arr * e_arr\n coeff = np.zeros_like(result)\n coeff[:n] = e_arr.conjugate()\n coeff[-n + 1:] = e_arr[:0:-1].conjugate()\n return fft_convolve(result, coeff, fft_1d_r2)[:n] * e_arr / m\n\n\n@nb.njit(fastmath=True)\ndef fft_convolve(a_arr, b_arr, fft_1d_r2=fft_1d_radix2_rbi):\n return fft_1d_r2(fft_1d_r2(a_arr) * fft_1d_r2(b_arr), False)\n\n\n@nb.njit(fastmath=True)\ndef fft_1d(arr):\n n = len(arr)\n if not n & (n - 1):\n return fft_1d_radix2_rbi(arr)\n else:\n return fft_1d_arb(arr)\nRun Code Online (Sandbox Code Playgroud)\n\n与 na\xc3\xafve DFT 算法(与此dft_1d()基本相同)相比,您获得了数量级的提升,但通常仍然比 慢很多。np.fft.fft()
相对速度根据输入大小而变化很大。\n对于2 的幂输入,这通常在 的一个数量级内np.fft.fft()。
对于非2 的幂,这通常在 的两个数量级内np.fft.fft()。
对于最坏的情况(素数左右,这里是 2 + 1 的幂),这是 的 1 倍np.fft.fft()。
FFT 时序的非线性行为是由于需要更复杂的算法来处理非2 的幂的任意输入大小的结果。这会影响此实现和来自 的实现np.fft.fft(),但np.fft.fft()包含更多优化,使其平均性能更好。
此处显示了 2 次幂 FFT 的替代实现。
\n我找到了解决方法。现在,请记住,像这样的函数numpy.fft.fft有很多方便的操作,所以如果你不像我一样陷入困境,你应该使用它们。
以下njit函数对 a 执行discrete fourier transforma 操作one dimensional array:
import numba
import numpy as np
import cmath
def dft(wave=None):
dft = np.fft.fft(wave)
return dft
@numba.njit
def dft_njit(wave=None):
N = len(wave)
dft_njit = np.zeros(N, dtype=np.complex128)
for i in range(N):
series_element = 0
for n in range(N):
series_element += wave[n] * cmath.exp(-2j * cmath.pi * i * n * (1 / N))
dft_njit[i] = series_element
return dft_njit
if __name__ == '__main__':
wave = [1,2,3,4,5]
wave = np.array(wave)
print(f' dft: \n{dft(wave=wave)}')
print(f' dft_njit: \n{dft_njit(wave=wave)}')
Run Code Online (Sandbox Code Playgroud)
输出:
dft:
[15. +0.j -2.5+3.4409548j -2.5+0.81229924j -2.5-0.81229924j
-2.5-3.4409548j ]
dft_njit:
[15. +0.j -2.5+3.4409548j -2.5+0.81229924j -2.5-0.81229924j
-2.5-3.4409548j ]
Run Code Online (Sandbox Code Playgroud)